找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Representation Theory of Finite Groups: a Guidebook; David A. Craven Textbook 2019 Springer Nature Switzerland AG 2019 Group representatio

[復(fù)制鏈接]
樓主: mentor
11#
發(fā)表于 2025-3-23 10:28:12 | 只看該作者
Representations of Symmetric Groups,ves the irreducible character degrees for symmetric groups. By contrast, the irreducible Brauer character degrees are not known. The branching rule describes the induction of ordinary characters of .. to .., and again in characteristic . things are much more complicated. We then switch to characteri
12#
發(fā)表于 2025-3-23 16:19:56 | 只看該作者
13#
發(fā)表于 2025-3-23 21:01:10 | 只看該作者
The Basics,ontents of a typical undergraduate course at a U.K. university; orthogonality relations, tensor products, the Artin–Wedderburn theorem, and so on. We then shift to finite group theory. The first few paragraphs give some standard facts to fix our notation, and we then talk briefly about simple groups and their entourage.
14#
發(fā)表于 2025-3-24 00:59:57 | 只看該作者
15#
發(fā)表于 2025-3-24 04:34:58 | 只看該作者
16#
發(fā)表于 2025-3-24 08:54:43 | 只看該作者
17#
發(fā)表于 2025-3-24 10:46:01 | 只看該作者
18#
發(fā)表于 2025-3-24 15:56:11 | 只看該作者
Blocks with Non-cyclic Defect Groups,-groups, before looking at the Morita equivalence classes of blocks. We then give the possible Morita equivalence classes of blocks for semidihedral and quaternion defect groups. The last topic is nilpotent blocks, which are those Morita equivalent to the group algebra ., where . is the defect group of the block.
19#
發(fā)表于 2025-3-24 20:57:19 | 只看該作者
20#
發(fā)表于 2025-3-25 01:24:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 19:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武乡县| 迭部县| 安义县| 洛宁县| 白水县| 江油市| 林周县| 安化县| 同仁县| 获嘉县| 敦煌市| 菏泽市| 滕州市| 南京市| 芒康县| 蒲江县| 黑水县| 龙泉市| 疏附县| 马鞍山市| 深州市| 南木林县| 蓬溪县| 健康| 南丰县| 剑川县| 莆田市| 台中县| 海淀区| 永丰县| 富源县| 梨树县| 始兴县| 普格县| 乐都县| 积石山| 南京市| 唐海县| 东源县| 宾川县| 观塘区|