找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Representation Learning for Natural Language Processing; Zhiyuan Liu,Yankai Lin,Maosong Sun Book‘‘‘‘‘‘‘‘ 2023Latest edition The Editor(s)

[復(fù)制鏈接]
樓主: Lipase
21#
發(fā)表于 2025-3-25 05:41:05 | 只看該作者
22#
發(fā)表于 2025-3-25 10:05:25 | 只看該作者
Ten Key Problems of Pre-trained Models: An Outlook of Representation Learning, models (i.e., big models) are the state of the art of representation learning for NLP and beyond. With the rapid growth of data scale and the development of computation devices, big models bring us to a new era of AI and NLP. Standing on the new giants of big models, there are many new challenges a
23#
發(fā)表于 2025-3-25 11:46:56 | 只看該作者
Sentence and Document Representation Learning,ument representation learning. Finally, we present representative applications of sentence and document representation, including text classification, sequence labeling, reading comprehension, question answering, information retrieval, and sequence-to-sequence generation.
24#
發(fā)表于 2025-3-25 19:44:25 | 只看該作者
Graph Representation Learning,ter, we introduce a variety of graph representation learning methods that embed graph data into vectors with shallow or deep neural models. After that, we introduce how graph representation learning helps NLP tasks.
25#
發(fā)表于 2025-3-25 23:11:00 | 只看該作者
Knowledge Representation Learning and Knowledge-Guided NLP,knowledge, including knowledge representation learning, knowledge-guided NLP, and knowledge acquisition. For linguistic knowledge, commonsense knowledge, and domain knowledge, we will introduce them in detail in subsequent chapters considering their unique knowledge properties.
26#
發(fā)表于 2025-3-26 03:37:13 | 只看該作者
27#
發(fā)表于 2025-3-26 06:39:38 | 只看該作者
Legal Knowledge Representation Learning,gal AI. In this chapter, we summarize the existing knowledge-intensive legal AI approaches regarding knowledge representation, acquisition, and application. Besides, future directions and ethical considerations are also discussed to promote the development of legal AI.
28#
發(fā)表于 2025-3-26 10:04:13 | 只看該作者
29#
發(fā)表于 2025-3-26 14:10:15 | 只看該作者
30#
發(fā)表于 2025-3-26 17:55:53 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 01:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
河津市| 青河县| 云安县| 陆川县| 桂东县| 修水县| 黄梅县| 邮箱| 怀集县| 通化市| 永城市| 连南| 舒城县| 合阳县| 潼南县| 平泉县| 灵宝市| 申扎县| 会东县| 赤峰市| 德兴市| 宁强县| 会昌县| 乐山市| 新竹市| 兰西县| 宿迁市| 海丰县| 奉节县| 班玛县| 石家庄市| 乳山市| 云浮市| 恩平市| 马尔康县| 扎兰屯市| 利津县| 建阳市| 余干县| 信丰县| 大洼县|