找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

123456
返回列表
打印 上一主題 下一主題

Titlebook: Renormalization Theory; Proceedings of the N G. Velo,A. S. Wightman Conference proceedings 1976 D. Reidel Publishing Company, Dordrecht, Ho

[復(fù)制鏈接]
樓主: negation
51#
發(fā)表于 2025-3-30 11:43:38 | 只看該作者
Joel S. Feldmanlassischen Differentialgeometrie. Das Problem ist wichtig für die Kartographie: jede Seite eines Atlas ist eine Abbildung eines Teils der Erd(kugel)oberfl?che in die Ebene. Man wei?, da? es keine l?ng entreuen Atlanten geben kann; hingegen gibt es sehr wohl winkeltreue Atlanten (z.B. durch stereogra
52#
發(fā)表于 2025-3-30 15:28:25 | 只看該作者
BPHZ Renormalization,Composite fields — local, covariant fields which are formally products of the “elementary” fields of a given theory — have played an important role in the theoretical developments of recent years, and promise to do so for many years to come.
53#
發(fā)表于 2025-3-30 18:12:22 | 只看該作者
The Power Counting Theorem for Feynman Integrals with Massless Propagators,Dyson’s power counting theorem is extended to the case where some of the mass parameters vanish. Weinberg’s ultraviolet convergence conditions are supplemented by infrared convergence conditions which combined are necessary and sufficient for the absolute convergence of Euclidean Feynman integrals.
54#
發(fā)表于 2025-3-30 21:43:25 | 只看該作者
Some Results on Dimensional Renormalization,In this lecture [1] we will give a definition of dimensionally regularized Feynman amplitudes and rules for the treatment of covariants (e.g. spin polynomials) which are quite different in spirit[2] from the ones given by Speer, but give equivalent results.
55#
發(fā)表于 2025-3-31 01:32:05 | 只看該作者
,Existence of Green’s Functions in Perturbative Q. E. D.,The purpose of this lecture is to report on some work, done in collaboration with P. Blanchard [1], which shows how, in the framework developped by H. Epstein and V. Glaser [2] one can prove the existence of Green’s functions in quantum electrodynamics (Q. E. D.).
56#
發(fā)表于 2025-3-31 05:28:45 | 只看該作者
123456
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 20:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
姚安县| 枣阳市| 聊城市| 荆门市| 衢州市| 康平县| 革吉县| 罗平县| 韶关市| 台州市| 庆阳市| 台中市| 佛冈县| 井冈山市| 和硕县| 高青县| 偏关县| 昌宁县| 绵阳市| 剑川县| 图们市| 荃湾区| 湛江市| 南皮县| 南陵县| 贡嘎县| 巴彦淖尔市| 哈尔滨市| 密云县| 禹州市| 广德县| 旬邑县| 田东县| 昔阳县| 九江市| 双辽市| 彩票| 扶余县| 宜宾市| 江北区| 林芝县|