找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Remote Sensing Time Series; Revealing Land Surfa Claudia Kuenzer,Stefan Dech,Wolfgang Wagner Book 2015 Springer International Publishing Sw

[復(fù)制鏈接]
樓主: OBESE
41#
發(fā)表于 2025-3-28 17:32:20 | 只看該作者
Assessment of Vegetation Trends in Drylands from Time Series of Earth Observation Data,iew of suitable long-term Earth Observation (EO) based datasets for assessment of global dryland vegetation trends is provided and a status map of contemporary greening and browning trends for global drylands is presented. The vegetation metrics suitable for per-pixel temporal trend analysis is disc
42#
發(fā)表于 2025-3-28 21:36:38 | 只看該作者
43#
發(fā)表于 2025-3-28 23:27:12 | 只看該作者
44#
發(fā)表于 2025-3-29 05:07:54 | 只看該作者
Assessing Rainfall-EVI Relationships in the Okavango Catchment Employing MODIS Time Series Data ando current and previous “effective” rainfall events. In this study a distributed lag model (DLM) was used to assess the impact of current and previous 16?day rainfall anomalies on the Enhanced Vegetation Index (EVI) as a proxy for ANPP in the Okavango catchment (South Africa). The two important aspec
45#
發(fā)表于 2025-3-29 11:19:34 | 只看該作者
46#
發(fā)表于 2025-3-29 12:59:38 | 只看該作者
Investigating Fourteen Years of Net Primary Productivity Based on Remote Sensing Data for China,yses of NPP time-series allow for understanding temporal patterns and changes in vegetation productivity. These are especially important in rapidly changing environments, such as China, the world’s third largest country. In this study, we use the model BETHY/DLR (Biosphere Energy Transfer Hydrology
47#
發(fā)表于 2025-3-29 17:10:27 | 只看該作者
48#
發(fā)表于 2025-3-29 21:59:06 | 只看該作者
49#
發(fā)表于 2025-3-30 01:15:33 | 只看該作者
50#
發(fā)表于 2025-3-30 05:56:35 | 只看該作者
Investigating Radar Time Series for Hydrological Characterisation in the Lower Mekong Basin,ter on the radar signal. The proper monitoring and analysis of such temporally dynamic phenomena requires dense time series data. Radar time series data is also useful for mitigating uncertainties in individual images, e.g. for the mapping of permanent water bodies. This chapter reviews capabilities
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 07:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
买车| 长海县| 孝昌县| 云阳县| 三门峡市| 桂平市| 田东县| 正镶白旗| 抚宁县| 荔波县| 崇仁县| 山东省| 碌曲县| 崇州市| 杭锦后旗| 安丘市| 项城市| 承德县| 遵义市| 青阳县| 宜宾县| 宁城县| 长葛市| 朔州市| 方城县| 资源县| 昭通市| 海淀区| 海城市| 怀宁县| 安康市| 曲阳县| 桓台县| 定安县| 尤溪县| 渑池县| 绥江县| 美姑县| 澳门| 天祝| 舞钢市|