找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Remote Sensing Intelligent Interpretation for Geology; From Perspective of Weitao Chen,Xianju Li,Lizhe Wang Book 2024 The Editor(s) (if ap

[復(fù)制鏈接]
查看: 43652|回復(fù): 44
樓主
發(fā)表于 2025-3-21 16:58:01 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Remote Sensing Intelligent Interpretation for Geology
副標(biāo)題From Perspective of
編輯Weitao Chen,Xianju Li,Lizhe Wang
視頻videohttp://file.papertrans.cn/827/826897/826897.mp4
概述Presents interpretable intelligence interpretation theory on remote sensing geology.Constructs geological remote sensing datasets from multi-level as a basis for intelligent interpretation.Presents no
圖書封面Titlebook: Remote Sensing Intelligent Interpretation for Geology; From Perspective of  Weitao Chen,Xianju Li,Lizhe Wang Book 2024 The Editor(s) (if ap
描述.This book presents the theories and methods for geology intelligent interpretation based on deep learning and remote sensing technologies. The main research subjects of this book include lithology and mineral abundance.??..This book focuses on the following five aspects: 1. Construction of geology remote sensing datasets from multi-level (pixel-level, scene-level, semantic segmentation-level, prior knowledge-assisted, transfer learning dataset), which are the basis of geology interpretation based on deep learning. 2. Research on lithology scene classification based on deep learning, prior knowledge, and remote sensing. 3. Research on lithology semantic segmentation based on deep learning and remote sensing. 4. Research on lithology classification based on transfer learning and remote sensing. 5. Research on inversion of mineral abundance based on the sparse unmixing theory and hyperspectral remote sensing.??..The book is intended for undergraduate and graduate students who are interested in geology, remote sensing, and artificial intelligence. It is also used as a reference book for scientific and technological personnel of geological exploration..
出版日期Book 2024
關(guān)鍵詞Geological exploration; multimodal remote sensing; Geology intelligent interpretation; Interpretable de
版次1
doihttps://doi.org/10.1007/978-981-99-8997-3
isbn_softcover978-981-99-8999-7
isbn_ebook978-981-99-8997-3
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Remote Sensing Intelligent Interpretation for Geology影響因子(影響力)




書目名稱Remote Sensing Intelligent Interpretation for Geology影響因子(影響力)學(xué)科排名




書目名稱Remote Sensing Intelligent Interpretation for Geology網(wǎng)絡(luò)公開度




書目名稱Remote Sensing Intelligent Interpretation for Geology網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Remote Sensing Intelligent Interpretation for Geology被引頻次




書目名稱Remote Sensing Intelligent Interpretation for Geology被引頻次學(xué)科排名




書目名稱Remote Sensing Intelligent Interpretation for Geology年度引用




書目名稱Remote Sensing Intelligent Interpretation for Geology年度引用學(xué)科排名




書目名稱Remote Sensing Intelligent Interpretation for Geology讀者反饋




書目名稱Remote Sensing Intelligent Interpretation for Geology讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:29:21 | 只看該作者
Geological Remote Sensing Dataset Construction for Multi-level Tasks,This chapter introduce the lithology datasets preparing for the intelligent interpretation methods in the following chapters. For each dataset, the basic situation of the study area, remote sensing data sources, the preprocessing approaches and overview of datasets are introduced.
板凳
發(fā)表于 2025-3-22 02:27:31 | 只看該作者
地板
發(fā)表于 2025-3-22 04:45:01 | 只看該作者
5#
發(fā)表于 2025-3-22 12:43:51 | 只看該作者
6#
發(fā)表于 2025-3-22 12:56:41 | 只看該作者
978-981-99-8999-7The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
7#
發(fā)表于 2025-3-22 19:02:26 | 只看該作者
Book 2024esearch subjects of this book include lithology and mineral abundance.??..This book focuses on the following five aspects: 1. Construction of geology remote sensing datasets from multi-level (pixel-level, scene-level, semantic segmentation-level, prior knowledge-assisted, transfer learning dataset),
8#
發(fā)表于 2025-3-22 21:45:28 | 只看該作者
Multi-view Lithology Remote Sensing Scene Classification Based on Transfer Learning, scene classification model based on multi-view data fusion, and proposes a transfer learning method based on multi-view data fusion, which can achieve the identification of new lithology types across regions and improve the model generalization ability.
9#
發(fā)表于 2025-3-23 03:07:35 | 只看該作者
Hyperspectral Remote Sensing Inversion of Mineral Abundance Based on Sparse Unmixing Method, by introducing the superpixel segmentation algorithm. Taking the Cuprite dataset as an example, which is a real mining dataset, experiments indicate that the sparse unmixing algorithm achieves satisfactory results on this dataset.
10#
發(fā)表于 2025-3-23 08:54:17 | 只看該作者
Lithological Scene Classification Based on Model Migration and Fine-Tuning Strategy,rce domain, and also improved the classification accuracy with only limited samples. OA and F1_score, and Kappa on the normal test set were 61.52?±?0.95%, 55.58?±?2.58%, and 52.18?±?1.01%, respectively, and on a small sample test set were 47.40?±?0.65%, 49.58?±?0.41%, and 40.41?±?0.45%, respectively, which were superior to the direct training.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 23:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
房产| 封丘县| 长海县| 太谷县| 长沙县| 明光市| 普定县| 监利县| 延长县| 甘谷县| 蓬莱市| 大同市| 夏津县| 卫辉市| 调兵山市| 诸城市| 安乡县| 花垣县| 鸡泽县| 南川市| 罗源县| 蚌埠市| 定襄县| 腾冲县| 确山县| 武平县| 绥棱县| 英德市| 克什克腾旗| 永州市| 房山区| 宾川县| 澄迈县| 平安县| 隆子县| 沙雅县| 星座| 寻甸| 江华| 稻城县| 潍坊市|