找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Remote Sensing Image Classification in R; Courage Kamusoko Book 2019 Springer Nature Singapore Pte Ltd. 2019 Remotely-Sensed Image Classif

[復(fù)制鏈接]
樓主: Malinger
11#
發(fā)表于 2025-3-23 10:33:38 | 只看該作者
Remote Sensing Digital Image Processing in R,nd temporal scales. Over the past decades, a plethora of image processing and classification methods have been developed and applied. The purpose of this chapter is to introduce remote sensing digital image processing and machine learning in R. The chapter will cover remote sensing image processing
12#
發(fā)表于 2025-3-23 14:48:52 | 只看該作者
Pre-processing,d in order to minimize sensor, solar, atmospheric and topographic effects. Generally, pre-processing focuses on radiometric and geometric correction (in particular georeferencing and image registration) of remotely-sensed imagery prior to image transformation or classification. Radiometric correctio
13#
發(fā)表于 2025-3-23 18:03:09 | 只看該作者
Image Transformation,erature review indicates that spectral and spatial indices can improve land use/cover classification accuracy. In this workbook, selected vegetation and texture indices will be computed from Landsat 5 TM imagery. The selected vegetation and texture indices will be used for image classification in Ch
14#
發(fā)表于 2025-3-23 23:23:51 | 只看該作者
15#
發(fā)表于 2025-3-24 02:54:39 | 只看該作者
16#
發(fā)表于 2025-3-24 06:44:21 | 只看該作者
Remote Sensing Digital Image Processing in R,his chapter is to introduce remote sensing digital image processing and machine learning in R. The chapter will cover remote sensing image processing and classification, a brief overview on R and RStudio, tutorial exercises, data and test site.
17#
發(fā)表于 2025-3-24 13:35:31 | 只看該作者
Image Classification,ing methods such as k-Nearest Neighbors (KNN), Artificial Neural Networks (ANN), single Decision Trees (DT), Support Vector Machines (SVM) and Random Forests (RF) machine learning classifiers will be used for image classification. The tutorial exercises show that multidate Landsat 5 imagery and the RF method provide relatively good results.
18#
發(fā)表于 2025-3-24 16:42:42 | 只看該作者
Book 2019ncise and practical reference tutorial, which equips readers to immediately start using the software platform and R packages for image processing and classification...This book is divided into five chapters. Chapter 1 introduces remote sensing digital image processing in R, while chapter 2 covers pr
19#
發(fā)表于 2025-3-24 21:02:08 | 只看該作者
Pre-processing, geometric distortions due to sensor-Earth geometry variations, and then converting remotely-sensed imagery to real world coordinates on the Earth’s surface. In this workbook, pre-processing will focus mainly on radiometric correction and reprojection of Landsat imagery.
20#
發(fā)表于 2025-3-25 01:59:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 08:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阿坝县| 博爱县| 龙江县| 方正县| 黔南| 阿拉尔市| 珲春市| 日照市| 宁津县| 隆子县| 开阳县| 江陵县| 石泉县| 蓬莱市| 六盘水市| 交城县| 康马县| 苗栗县| 阜南县| 荔浦县| 手机| 吉林省| 武功县| 梨树县| 加查县| 林西县| 永城市| 施秉县| 岗巴县| 丹寨县| 长沙县| 共和县| 延庆县| 望都县| 商都县| 于都县| 广德县| 呼和浩特市| 西丰县| 藁城市| 景泰县|