找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Remote Sensing Big Data; Liping Di,Eugene Yu Book 2023 Springer Nature Switzerland AG 2023 Geospatial big data.Remote sensing.Cyberinfrast

[復制鏈接]
樓主: Amalgam
31#
發(fā)表于 2025-3-26 22:57:14 | 只看該作者
32#
發(fā)表于 2025-3-27 03:35:46 | 只看該作者
Machine Learning and Data Mining Algorithms for Geospatial Big Data,trategies are discussed. They are distributed and parallel learning, data reduction and approximate computing, feature selection and feature extraction, incremental learning, deep learning, ensemble analysis, granular learning, stochastic algorithms, transfer learning, and active learning.
33#
發(fā)表于 2025-3-27 05:42:36 | 只看該作者
34#
發(fā)表于 2025-3-27 11:05:38 | 只看該作者
,Examples of Remote Sensing Applications of Big Data Analytics—Fusion of Diverse Earth Observation Dpatial, spectral, radiometric, and temporal) resolutions. One newly developed, learning-based spatiotemporal fusion model, the Deep Convolutional Spatiotemporal Fusion Network (DCSTFN), is described and compared with alternative spatiotemporal fusion models, that is, the spatial and temporal adaptiv
35#
發(fā)表于 2025-3-27 13:48:09 | 只看該作者
,Examples of Remote Sensing Applications of Big Data Analytics—Agricultural Drought Monitoring and Fmonitoring and forecasting system. The system demonstrated the event-based processing workflow using a service-oriented architecture. Standards of geospatial Web services are adopted to achieve reusability, flexibility, and scalability in handling remote sensing big data.
36#
發(fā)表于 2025-3-27 17:51:00 | 只看該作者
37#
發(fā)表于 2025-3-27 22:29:15 | 只看該作者
Geospatial Big Data Initiatives in the World,selected countries and international organizations. The reviews highlighted that geospatial standards play an important role in these initiatives to support interoperation of data, metadata, and services.
38#
發(fā)表于 2025-3-28 03:49:34 | 只看該作者
39#
發(fā)表于 2025-3-28 10:16:48 | 只看該作者
40#
發(fā)表于 2025-3-28 12:40:05 | 只看該作者
Special Features of Remote Sensing Big Data,17). Remote sensing big data may cover as many Vs as other big data (Khan et al. Proceedings of the International Conference on Omni-Layer Intelligent Systems - COINS ‘19. ACM Press, Crete, Greece, 2019).
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 20:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
突泉县| 富宁县| 威信县| 徐汇区| 大邑县| 准格尔旗| 泗水县| 金塔县| 河西区| 晋宁县| 亳州市| 桃园县| 隆安县| 巴里| 黄山市| 桃园市| 灵璧县| 乐业县| 北宁市| 海南省| 邢台市| 德兴市| 江山市| 安陆市| 永修县| 普兰县| 祥云县| 常州市| 宁安市| 莆田市| 息烽县| 砚山县| 秭归县| 清徐县| 木兰县| 琼海市| 乐都县| 崇阳县| 中江县| 保康县| 鞍山市|