找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Relativity and Gravitation; 100 Years after Eins Ji?í Bi?ák,Tomá? Ledvinka Conference proceedings 2014 Springer International Publishing Sw

[復制鏈接]
樓主: Intermediary
21#
發(fā)表于 2025-3-25 07:12:58 | 只看該作者
Geometrostatics: The Geometry of Static Space-Timesheory. Moreover, we present a novel physical interpretation of the level sets of the canonical lapse function and apply it to prove uniqueness results. Finally, we suggest a notion of force on test particles in geometrostatic space-times.
22#
發(fā)表于 2025-3-25 07:30:16 | 只看該作者
23#
發(fā)表于 2025-3-25 13:16:53 | 只看該作者
Non-Linear Effects in Non-Kerr Spacetimesacetime detectable. One of the differences is that these non-Kerr spacetimes do not posses all the symmetries needed to make them integrable. We discuss how we can take advantage of this fact by examining EMRIs into the Manko–Novikov spacetime.
24#
發(fā)表于 2025-3-25 17:31:45 | 只看該作者
25#
發(fā)表于 2025-3-25 22:45:39 | 只看該作者
26#
發(fā)表于 2025-3-26 00:34:59 | 只看該作者
Hidden Symmetries of the Dirac Equation in Curved Space-Timeimit, the spinning particle. A concrete application of the general results is provided by the case of rotating higher dimensional black holes with cosmological constant, which we discuss. For these metrics the Dirac equation is separable and the relation between this and hidden symmetries is explained.
27#
發(fā)表于 2025-3-26 08:00:44 | 只看該作者
28#
發(fā)表于 2025-3-26 12:07:54 | 只看該作者
Shape Dynamicsl covariance, but not local relativity of rods. It is the purpose of this contribution to show how Shape Dynamics, a theory that is locally equivalent to General Relativity, implements local relativity of rods and spatial covariance and how a BRST formulation, which I call Doubly General Relativity, implements all of Barbour’s principles.
29#
發(fā)表于 2025-3-26 14:02:14 | 只看該作者
30#
發(fā)表于 2025-3-26 20:19:39 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 18:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
丽水市| 黄冈市| 蒲江县| 大洼县| 六枝特区| 霸州市| 华蓥市| 平遥县| 离岛区| 呼图壁县| 米林县| 台东县| 思茅市| 广昌县| 台江县| 五常市| 南雄市| 兰州市| 徐汇区| 新野县| 灵台县| 饶阳县| 迁西县| 开原市| 尚志市| 镇平县| 自贡市| 柳州市| 华坪县| 碌曲县| 互助| 和平区| 宿迁市| 桦川县| 苍山县| 江陵县| 隆昌县| 怀化市| 陇川县| 且末县| 西贡区|