找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Relativistic Transitions in the Hydrogenic Atoms; Elementary Theory R. Boudet Book 2009 Springer-Verlag Berlin Heidelberg 2009 Dirac equati

[復(fù)制鏈接]
樓主: 拼圖游戲
41#
發(fā)表于 2025-3-28 14:41:00 | 只看該作者
42#
發(fā)表于 2025-3-28 22:19:05 | 只看該作者
Introductiond as owning one electron as the hydrogen atom. It is the case for an atom whose all the electrons, except one, are not considered, either because they have been thrown out or because their action is neglected..Corrective terms taking into account this action, or the size of the nu cleus, may be used
43#
發(fā)表于 2025-3-29 01:30:08 | 只看該作者
44#
發(fā)表于 2025-3-29 06:22:52 | 只看該作者
The Dirac Equation of the Electron in the Real Formalismr formalism to the real form given by Hestenes to this equation. It is completed by the first paragraph of the Appendix of Part I, which allows a step-by-step traduction of the complex formalism to the real one and vice versa.
45#
發(fā)表于 2025-3-29 10:21:04 | 只看該作者
46#
發(fā)表于 2025-3-29 12:57:19 | 只看該作者
47#
發(fā)表于 2025-3-29 18:55:51 | 只看該作者
Matrix Elements for the Relativistic Transitions with Retardation 1S1/2-Continuumplace method. The incidence of the diverse approximations with regard to the exact solution are drawn out numerically. A conclusion is the necessity of the use of retardation and considerable divergence between relativistic and nonrelativistic approachs for the high values of energy in the continuum
48#
發(fā)表于 2025-3-29 20:11:43 | 只看該作者
49#
發(fā)表于 2025-3-30 00:12:33 | 只看該作者
50#
發(fā)表于 2025-3-30 04:56:25 | 只看該作者
The Electromagnetic Fields Created by Time-Sinusoidal Currentpecificity of the real formalism, the form given by Hestenes to the wave function of the electron, strictly equivalent to the Dirac spinor, may be presented, in the case of central potential, as a combination of the vectors of this frame.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 10:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
潜江市| 渝北区| 祥云县| 百色市| 鸡泽县| 德阳市| 长汀县| 青神县| 尤溪县| 霍林郭勒市| 阿鲁科尔沁旗| 万盛区| 江北区| 宁明县| 西藏| 禹城市| 巨鹿县| 墨脱县| 公主岭市| 都安| 仁寿县| 桂阳县| 莱芜市| 依安县| 忻城县| 三台县| 观塘区| 南皮县| 崇仁县| 桓仁| 台南市| 柳河县| 博野县| 杭锦旗| 会同县| 扬中市| 剑河县| 赣榆县| 措勤县| 蒙城县| 南和县|