找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Relations and Kleene Algebra in Computer Science; 9th International Co Renate A. Schmidt Conference proceedings 2006 Springer-Verlag Berlin

[復制鏈接]
樓主: abandon
41#
發(fā)表于 2025-3-28 16:17:00 | 只看該作者
42#
發(fā)表于 2025-3-28 22:26:18 | 只看該作者
43#
發(fā)表于 2025-3-29 00:27:20 | 只看該作者
Finite Symmetric Integral Relation Algebras with No 3-Cycles, algebras. For example, it contains algebras that are not representable, algebras that are representable only on finite sets, algebras that are representable only on infinite sets, algebras that are representable on both finite and infinite sets, and there is an algorithm for determining which case holds.
44#
發(fā)表于 2025-3-29 06:45:42 | 只看該作者
45#
發(fā)表于 2025-3-29 08:39:08 | 只看該作者
Betweenness and Comparability Obtained from Binary Relations,. Furthermore, we characterize betweenness relations induced by reflexive and antisymmetric binary relations, thus generalizing earlier results on partial orders. We conclude with a sketch of the algorithmic aspects of recognizing induced betweenness relations.
46#
發(fā)表于 2025-3-29 11:41:13 | 只看該作者
Monotonicity Analysis Can Speed Up Verification,ring with the Alloy Analyzer, we show that for a relevant class of problems this technique outperforms analysis of the same problems using SAT-solvers, while consuming a fraction of the memory SAT-solvers require.
47#
發(fā)表于 2025-3-29 18:28:39 | 只看該作者
48#
發(fā)表于 2025-3-29 20:33:53 | 只看該作者
49#
發(fā)表于 2025-3-30 03:46:03 | 只看該作者
50#
發(fā)表于 2025-3-30 06:50:39 | 只看該作者
Evaluating Sets of Search Points Using Relational Algebra,nts with certain properties. Therefore we transform relations into vectors and prove a formula to translate properties of relations into properties of the corresponding vectors. This approach is applied to timetable problems.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-24 03:18
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
盐边县| 敦化市| 富宁县| 东至县| 军事| 榆林市| 黑龙江省| 巨鹿县| 山西省| 米易县| 河西区| 安乡县| 射洪县| 漯河市| 托克托县| 屯门区| 会泽县| 建始县| 南靖县| 社会| 庄河市| 嘉禾县| 江西省| 台东市| 泰来县| 宁乡县| 本溪| 进贤县| 常宁市| 仙游县| 年辖:市辖区| 平南县| 明星| 宁城县| 百色市| 平阴县| 遂平县| 莎车县| 西贡区| 彭水| 东港市|