找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Relational Methods for Computer Science Applications; Ewa Or?owska,Andrzej Sza?as Book 2001 Springer-Verlag Berlin Heidelberg 2001 Applied

[復(fù)制鏈接]
樓主: Thoracic
21#
發(fā)表于 2025-3-25 07:12:38 | 只看該作者
22#
發(fā)表于 2025-3-25 10:34:24 | 只看該作者
Processes as Relationsf Communicating Systems CCS are interpreted by purely relational terms without any inductive methods. We also introduce the notion of a relational bisimulation which leads to a canonical representative of a bisimulation-class of processes.
23#
發(fā)表于 2025-3-25 13:01:28 | 只看該作者
24#
發(fā)表于 2025-3-25 17:31:27 | 只看該作者
25#
發(fā)表于 2025-3-25 21:59:26 | 只看該作者
Studies in Fuzziness and Soft Computinghttp://image.papertrans.cn/r/image/826102.jpg
26#
發(fā)表于 2025-3-26 03:17:05 | 只看該作者
27#
發(fā)表于 2025-3-26 06:54:35 | 只看該作者
Contact Relation AlgebrasContact relation algebras (CRAs), introduced in [25], arise from the study of “part—of” and “contact” relations rooted in mereology and have applications, for example, in qualitative spatial reasoning. We give an overview of the origins of CRAs and numerous examples.
28#
發(fā)表于 2025-3-26 09:59:09 | 只看該作者
Relational Models for the Nonassociative Lambek CalculusWe prove a theorem on representation of residuated groupoids in algebras of binary relations, which yields a strong completeness theorem for the nonassociative Lambek calculus. Relational models are of interest for dynamic interpretations of Lambek-style calculi [5]. We use techniques of labelled formulas [7], [5] to the nonassociative case.
29#
發(fā)表于 2025-3-26 14:12:16 | 只看該作者
30#
發(fā)表于 2025-3-26 19:08:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 16:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
深水埗区| 东乡| 甘德县| 雷州市| 汝城县| 新泰市| 星座| 开阳县| 贵德县| 张家港市| 攀枝花市| 莆田市| 黄平县| 旌德县| 曲阳县| 桂阳县| 平遥县| 桂平市| 林州市| 长宁县| 探索| 澄城县| 曲沃县| 阳江市| 五台县| 章丘市| 天全县| 桓仁| 额尔古纳市| 盐亭县| 黄龙县| 班玛县| 罗定市| 尉氏县| 沂南县| 平武县| 睢宁县| 黔西县| 榆树市| 大余县| 凭祥市|