找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Reinforcement Learning-Enabled Intelligent Energy Management for Hybrid Electric Vehicles; Teng Liu Book 2019 Springer Nature Switzerland

[復(fù)制鏈接]
查看: 53024|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:09:34 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Reinforcement Learning-Enabled Intelligent Energy Management for Hybrid Electric Vehicles
編輯Teng Liu
視頻videohttp://file.papertrans.cn/826/825946/825946.mp4
叢書名稱Synthesis Lectures on Advances in Automotive Technology
圖書封面Titlebook: Reinforcement Learning-Enabled Intelligent Energy Management for Hybrid Electric Vehicles;  Teng Liu Book 2019 Springer Nature Switzerland
描述.Powertrain electrification, fuel decarburization, and energy diversification are techniques that are spreading all over the world, leading to cleaner and more efficient vehicles. Hybrid electric vehicles (HEVs) are considered a promising technology today to address growing air pollution and energy deprivation. To realize these gains and still maintain good performance, it is critical for HEVs to have sophisticated energy management systems. Supervised by such a system, HEVs could operate in different modes, such as full electric mode and power split mode. Hence, researching and constructing advanced energy management strategies (EMSs) is important for HEVs performance. There are a few books about rule- and optimization-based approaches for formulating energy management systems. Most of them concern traditional techniques and their efforts focus on searching for optimal control policies offline. There is still much room to introduce learning-enabled energy management systems foundedin artificial intelligence and their real-time evaluation and application...In this book, a series hybrid electric vehicle was considered as the powertrain model, to describe and analyze a reinforcement
出版日期Book 2019
版次1
doihttps://doi.org/10.1007/978-3-031-01503-8
isbn_softcover978-3-031-00375-2
isbn_ebook978-3-031-01503-8Series ISSN 2576-8107 Series E-ISSN 2576-8131
issn_series 2576-8107
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書目名稱Reinforcement Learning-Enabled Intelligent Energy Management for Hybrid Electric Vehicles影響因子(影響力)




書目名稱Reinforcement Learning-Enabled Intelligent Energy Management for Hybrid Electric Vehicles影響因子(影響力)學(xué)科排名




書目名稱Reinforcement Learning-Enabled Intelligent Energy Management for Hybrid Electric Vehicles網(wǎng)絡(luò)公開度




書目名稱Reinforcement Learning-Enabled Intelligent Energy Management for Hybrid Electric Vehicles網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Reinforcement Learning-Enabled Intelligent Energy Management for Hybrid Electric Vehicles被引頻次




書目名稱Reinforcement Learning-Enabled Intelligent Energy Management for Hybrid Electric Vehicles被引頻次學(xué)科排名




書目名稱Reinforcement Learning-Enabled Intelligent Energy Management for Hybrid Electric Vehicles年度引用




書目名稱Reinforcement Learning-Enabled Intelligent Energy Management for Hybrid Electric Vehicles年度引用學(xué)科排名




書目名稱Reinforcement Learning-Enabled Intelligent Energy Management for Hybrid Electric Vehicles讀者反饋




書目名稱Reinforcement Learning-Enabled Intelligent Energy Management for Hybrid Electric Vehicles讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:47:02 | 只看該作者
Prediction and Updating of Driving Information,es to derive the predictive EMSs. The experiment tests indicate the short-term driving cycles prediction could effectively improve control performance in different cost functions. According to this historical data, the future driving cycle information could easily be obtained from database search [8
板凳
發(fā)表于 2025-3-22 03:50:31 | 只看該作者
Book 2019offline. There is still much room to introduce learning-enabled energy management systems foundedin artificial intelligence and their real-time evaluation and application...In this book, a series hybrid electric vehicle was considered as the powertrain model, to describe and analyze a reinforcement
地板
發(fā)表于 2025-3-22 04:45:37 | 只看該作者
5#
發(fā)表于 2025-3-22 11:36:16 | 只看該作者
6#
發(fā)表于 2025-3-22 14:33:46 | 只看該作者
7#
發(fā)表于 2025-3-22 20:21:41 | 只看該作者
8#
發(fā)表于 2025-3-23 00:33:25 | 只看該作者
9#
發(fā)表于 2025-3-23 02:57:50 | 只看該作者
Conclusion,l major work in the future is to access and improve energy management strategies in the intelligent transportation environment. Since the traffic information can be acquired, how to attune the strategies to other vehicles’ and infrastructures’ behaviors should be further addressed.
10#
發(fā)表于 2025-3-23 09:36:38 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 11:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
潞西市| 陇南市| 夹江县| 樟树市| 阳朔县| 昌平区| 景泰县| 盈江县| 资讯 | 吉林省| 桑日县| 巩义市| 广宁县| 博客| 桦南县| 志丹县| 浦东新区| 泊头市| 常州市| 临海市| 荥经县| 白河县| 遂溪县| 彭山县| 茶陵县| 定远县| 育儿| 镇宁| 杭锦后旗| 乃东县| 璧山县| 攀枝花市| 遵义市| 开封市| 鲜城| 甘洛县| 梁平县| 安丘市| 龙里县| 砚山县| 南召县|