找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Reinforcement Learning with Hybrid Quantum Approximation in the NISQ Context; Leonhard Kunczik Book 2022 The Editor(s) (if applicable) and

[復(fù)制鏈接]
樓主: BID
11#
發(fā)表于 2025-3-23 12:40:36 | 只看該作者
Approximation in Quantum Computing,This chapter focuses on function approximation in quantum computing and introduces quantum variational circuits as a quantum approximator. The idea of hybrid training, which combines classical machine learning algorithms with quantum variational circuits is explained, to build the foundation for the new quantum Reinforcement Learning method.
12#
發(fā)表于 2025-3-23 14:51:02 | 只看該作者
13#
發(fā)表于 2025-3-23 20:42:34 | 只看該作者
Future Steps in Quantum Reinforcement Learning for Complex Scenarios,This chapter summarizes future steps to enhance the performance of the quantum REINFORCE algorithm. It further shares some practical issues that arose while working with the IBM quantum hardware, which can be considered while developing other quantum policy gradient algorithms.
14#
發(fā)表于 2025-3-24 00:56:00 | 只看該作者
forcement Learning has proven its capabilities in different challenging optimization problems and is now an established method in Operations Research. However, complex attacker-defender scenarios have several characteristics that challenge Reinforcement Learning algorithms, requiring enormous comput
15#
發(fā)表于 2025-3-24 03:25:22 | 只看該作者
,Motivation: Complex Attacker-Defender Scenarios—The Eternal Conflict,ems. The connection between Reinforcement Learning and quantum computing is drawn to reduce the required computational power in Reinforcement Learning and an outlook on the research questions is given.
16#
發(fā)表于 2025-3-24 07:41:21 | 只看該作者
Applying Quantum REINFORCE to the Information Game,ring the results to the classical Q-learning and REINFORCE algorithms. The advantages of the new algorithm are derived and discussed. Additionally, details on the hyper-parameter optimization within the experiments are given.
17#
發(fā)表于 2025-3-24 12:00:44 | 只看該作者
18#
發(fā)表于 2025-3-24 15:03:30 | 只看該作者
19#
發(fā)表于 2025-3-24 21:55:52 | 只看該作者
Book 2022Learning has proven its capabilities in different challenging optimization problems and is now an established method in Operations Research. However, complex attacker-defender scenarios have several characteristics that challenge Reinforcement Learning algorithms, requiring enormous computational po
20#
發(fā)表于 2025-3-25 02:24:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 13:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
忻城县| 蒙山县| 富顺县| 乌兰县| 闽清县| 桦甸市| 梅河口市| 大理市| 霍山县| 定边县| 珠海市| 阜南县| 青龙| 麦盖提县| 巴塘县| 阜平县| 洛阳市| 水富县| 宁城县| 黄龙县| 海淀区| 宁乡县| 沙雅县| 桐梓县| 宜兰市| 萝北县| 聊城市| 平塘县| 镇坪县| 托里县| 台北市| 松桃| 玛多县| 兴海县| 云南省| 东莞市| 防城港市| 金川县| 瑞丽市| 碌曲县| 石狮市|