找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Reinforcement Learning for Finance; Solve Problems in Fi Samit Ahlawat Book 2023 Samit Ahlawat 2023 Reinforcement Learning.Artificial Intel

[復(fù)制鏈接]
查看: 33742|回復(fù): 35
樓主
發(fā)表于 2025-3-21 19:42:46 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Reinforcement Learning for Finance
副標(biāo)題Solve Problems in Fi
編輯Samit Ahlawat
視頻videohttp://file.papertrans.cn/826/825938/825938.mp4
概述Covers reinforcement learning concepts with mathematical theory and practical application.Explains cutting-edge advances in reinforcement learning algorithms..Covers convolutional neural networks and
圖書封面Titlebook: Reinforcement Learning for Finance; Solve Problems in Fi Samit Ahlawat Book 2023 Samit Ahlawat 2023 Reinforcement Learning.Artificial Intel
描述This book introduces reinforcement learning with mathematical theory and practical examples from quantitative finance using the TensorFlow library..Reinforcement Learning for Finance. begins by describing methods for training neural networks. Next, it discusses CNN and RNN – two kinds of neural networks used as deep learning networks in reinforcement learning. Further, the book dives into reinforcement learning theory, explaining the Markov decision process, value function, policy, and policy gradients, with their mathematical formulations and learning algorithms. It covers recent reinforcement learning algorithms from double deep-Q networks to twin-delayed deep deterministic policy gradients and generative adversarial networks with examples using the TensorFlow Python library. It also serves as a quick hands-on guide to TensorFlow programming, covering concepts ranging from variables and graphs to automatic differentiation, layers, models, andloss functions..After completing this book, you will understand reinforcement learning with deep q and generative adversarial networks using the TensorFlow library..What You Will Learn.Understand the fundamentals of reinforcement learning.App
出版日期Book 2023
關(guān)鍵詞Reinforcement Learning; Artificial Intelligence; Python; Machine Learning; TensorFlow; RlPy Libraries; Alg
版次1
doihttps://doi.org/10.1007/978-1-4842-8835-1
isbn_softcover978-1-4842-8834-4
isbn_ebook978-1-4842-8835-1
copyrightSamit Ahlawat 2023
The information of publication is updating

書目名稱Reinforcement Learning for Finance影響因子(影響力)




書目名稱Reinforcement Learning for Finance影響因子(影響力)學(xué)科排名




書目名稱Reinforcement Learning for Finance網(wǎng)絡(luò)公開度




書目名稱Reinforcement Learning for Finance網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Reinforcement Learning for Finance被引頻次




書目名稱Reinforcement Learning for Finance被引頻次學(xué)科排名




書目名稱Reinforcement Learning for Finance年度引用




書目名稱Reinforcement Learning for Finance年度引用學(xué)科排名




書目名稱Reinforcement Learning for Finance讀者反饋




書目名稱Reinforcement Learning for Finance讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:59:10 | 只看該作者
Recurrent Neural Networks, involves unrolling the network through time and using backpropagation. Vanishing gradients pose a challenge to training RNNs, as the examples will demonstrate. A LSTM network was proposed by Hochreiter and Schmidhuber in 1997. In 2007, it was applied to speech recognition with outstanding results.
板凳
發(fā)表于 2025-3-22 02:04:46 | 只看該作者
地板
發(fā)表于 2025-3-22 08:08:49 | 只看該作者
this book, you will understand reinforcement learning with deep q and generative adversarial networks using the TensorFlow library..What You Will Learn.Understand the fundamentals of reinforcement learning.App978-1-4842-8834-4978-1-4842-8835-1
5#
發(fā)表于 2025-3-22 09:51:03 | 只看該作者
6#
發(fā)表于 2025-3-22 16:49:17 | 只看該作者
Samit Ahlawatdie Uniformit?t — der westlichen Zivilisation zu st?rken und um ohne nationale Einengungen gro?e Aufgaben in Angriff nehmen zu k?nnen, welche den Kr?ften einzelner L?nder nicht voll zug?nglich sind (ich denke an das internationale Geophysikalische Jahr, oder an das erfolgreiche Unternehmen von CERN
7#
發(fā)表于 2025-3-22 20:33:37 | 只看該作者
8#
發(fā)表于 2025-3-22 22:18:09 | 只看該作者
9#
發(fā)表于 2025-3-23 04:00:27 | 只看該作者
10#
發(fā)表于 2025-3-23 06:08:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-31 09:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
思南县| 凤冈县| 南澳县| 合江县| 百色市| 伊宁县| 新竹县| 广东省| 汪清县| 高碑店市| 岢岚县| 巫山县| 霍林郭勒市| 额敏县| 乌兰察布市| 通渭县| 团风县| 曲周县| 信丰县| 棋牌| 康平县| 沐川县| 五寨县| 淳安县| 商水县| 河北省| 西丰县| 东丰县| 临邑县| 六枝特区| 册亨县| 类乌齐县| 广灵县| 抚顺市| 绍兴县| 临颍县| 务川| 沐川县| 西和县| 南郑县| 华亭县|