找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Reinforcement Learning From Scratch; Understanding Curren Uwe Lorenz Textbook 20221st edition The Editor(s) (if applicable) and The Author(

[復(fù)制鏈接]
查看: 49213|回復(fù): 36
樓主
發(fā)表于 2025-3-21 19:02:12 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Reinforcement Learning From Scratch
副標(biāo)題Understanding Curren
編輯Uwe Lorenz
視頻videohttp://file.papertrans.cn/826/825936/825936.mp4
概述An introduction to reinforcement learning that is hands-on and accessible using Java and Greenfoot.Enables implementation of RL algorithms using easy-to-understand examples and implementations.Suitabl
圖書封面Titlebook: Reinforcement Learning From Scratch; Understanding Curren Uwe Lorenz Textbook 20221st edition The Editor(s) (if applicable) and The Author(
描述.In ancient games such as chess or go, the most brilliant players can improve by studying the strategies produced by a machine. Robotic systems practice their own movements. In arcade games, agents capable of learning reach superhuman levels within a few hours. How do these spectacular reinforcement learning algorithms work??..With easy-to-understand explanations and clear examples in Java and Greenfoot, you can acquire the principles of reinforcement learning and apply them in your own intelligent agents. Greenfoot (M.K?lling, King‘s College London) and the hamster model (D. Bohles, University of Oldenburg) are simple but also powerful didactic tools that were developed to convey basic programming concepts.?.The result is?an accessible introduction into machine learning that? concentrates on reinforcement learning. Taking the reader through the steps of developing intelligent agents, from the very basics to advanced aspects, touching on a variety of machine learning algorithms along the way, one is allowed?to play along, experiment, and add their own ideas and experiments.??
出版日期Textbook 20221st edition
關(guān)鍵詞Machine Learning; Artificial Intelligence; Reinforcement Learning; SARSA; Q-Learning; Policy Gadient; Acto
版次1
doihttps://doi.org/10.1007/978-3-031-09030-1
isbn_softcover978-3-031-09032-5
isbn_ebook978-3-031-09030-1
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Reinforcement Learning From Scratch影響因子(影響力)




書目名稱Reinforcement Learning From Scratch影響因子(影響力)學(xué)科排名




書目名稱Reinforcement Learning From Scratch網(wǎng)絡(luò)公開度




書目名稱Reinforcement Learning From Scratch網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Reinforcement Learning From Scratch被引頻次




書目名稱Reinforcement Learning From Scratch被引頻次學(xué)科排名




書目名稱Reinforcement Learning From Scratch年度引用




書目名稱Reinforcement Learning From Scratch年度引用學(xué)科排名




書目名稱Reinforcement Learning From Scratch讀者反饋




書目名稱Reinforcement Learning From Scratch讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:26:57 | 只看該作者
Uwe LorenzAn introduction to reinforcement learning that is hands-on and accessible using Java and Greenfoot.Enables implementation of RL algorithms using easy-to-understand examples and implementations.Suitabl
板凳
發(fā)表于 2025-3-22 01:08:12 | 只看該作者
978-3-031-09032-5The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
地板
發(fā)表于 2025-3-22 05:21:56 | 只看該作者
5#
發(fā)表于 2025-3-22 11:19:00 | 只看該作者
http://image.papertrans.cn/r/image/825936.jpg
6#
發(fā)表于 2025-3-22 15:31:14 | 只看該作者
7#
發(fā)表于 2025-3-22 17:21:29 | 只看該作者
8#
發(fā)表于 2025-3-22 23:53:25 | 只看該作者
Artificial Neural Networks as Estimators for State Values and the Action Selection,rticular, the so-called artificial neural networks are discussed. We will also learn possibilities to use such estimators to create parameterized policies which, for a given state, can produce and improve a useful probability distribution over the available actions.
9#
發(fā)表于 2025-3-23 01:52:20 | 只看該作者
10#
發(fā)表于 2025-3-23 09:18:20 | 只看該作者
Basic Concepts of Reinforcement Learning,agent is and how it generates more or less intelligent behavior in an environment with its “policy.” The structure of the basic model of reinforcement learning is described and the concept of intelligence in terms of individual utility maximization is introduced. In addition, some formal means are i
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 18:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
兴义市| 八宿县| 永宁县| 抚顺市| 临沭县| 天水市| 剑川县| 宜阳县| 贵港市| 大洼县| 马公市| 乐至县| 七台河市| 许昌县| 南皮县| 昆明市| 镇安县| 桃江县| 平泉县| 喜德县| 靖边县| 丹凤县| 中西区| 贞丰县| 涞源县| 望谟县| 和硕县| 苍山县| 岳池县| 丽江市| 奉贤区| 来凤县| 秦安县| 余干县| 伊通| 巴东县| 资溪县| 大新县| 贡嘎县| 大城县| 泰顺县|