找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Reinforcement Learning Algorithms: Analysis and Applications; Boris Belousov,Hany Abdulsamad,Jan Peters Book 2021 The Editor(s) (if applic

[復(fù)制鏈接]
樓主: Hayes
21#
發(fā)表于 2025-3-25 05:57:38 | 只看該作者
Persistent Homology for Dimensionality Reductionmetric properties of the data. Theoretical underpinnings of the method are presented together with computational algorithms and successful applications in various areas of machine learning. The goal of this chapter is to introduce persistent homology as a practical tool for dimensionality reduction to reinforcement learning researchers.
22#
發(fā)表于 2025-3-25 10:02:21 | 只看該作者
23#
發(fā)表于 2025-3-25 13:20:41 | 只看該作者
24#
發(fā)表于 2025-3-25 16:26:04 | 只看該作者
25#
發(fā)表于 2025-3-25 21:47:20 | 只看該作者
Reward Function Design in Reinforcement LearningNevertheless, the mainstream of RL research in recent years has been preoccupied with the development and analysis of learning algorithms, treating the reward signal as given and not subject to change. As the learning algorithms have matured, it is now time to revisit the questions of reward functio
26#
發(fā)表于 2025-3-26 02:22:28 | 只看該作者
27#
發(fā)表于 2025-3-26 06:09:58 | 只看該作者
A Survey on Constraining Policy Updates Using the KL Divergenceampled from an environment eliminates the problem of accumulating model errors that model-based methods suffer from. However, model-free methods are less sample efficient compared to their model-based counterparts and may yield unstable policy updates when the step size between successive policy upd
28#
發(fā)表于 2025-3-26 09:22:44 | 只看該作者
Fisher Information Approximations in Policy Gradient Methodson algorithms. The update direction in NPG-based algorithms is found by preconditioning the usual gradient with the inverse of the Fisher information matrix (FIM). Estimation and approximation of the FIM and FIM-vector products (FVP) are therefore of crucial importance for enabling applications of t
29#
發(fā)表于 2025-3-26 12:50:16 | 只看該作者
30#
發(fā)表于 2025-3-26 17:09:05 | 只看該作者
Information-Loss-Bounded Policy Optimization as transforming the constrained TRPO problem into an unconstrained one, either via turning the constraint into a penalty or via objective clipping. In this chapter, an alternative problem reformulation is studied, where the information loss is bounded using a novel transformation of the KullbackLei
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 23:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
遂宁市| 手机| 天台县| 龙泉市| 巩留县| 监利县| 萝北县| 衡东县| 青河县| 盐源县| 罗源县| 绥江县| 济阳县| 辽宁省| 五华县| 雅安市| 交城县| 雅江县| 兴国县| 工布江达县| 石家庄市| 安岳县| 吉林省| 长兴县| 博罗县| 宁国市| 马山县| 峨山| 甘谷县| 类乌齐县| 墨江| 重庆市| 胶州市| 涞水县| 慈溪市| 新余市| 会昌县| 旬阳县| 嘉义市| 宿松县| 郁南县|