找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Reinforcement Learning; Optimal Feedback Con Jinna Li,Frank L. Lewis,Jialu Fan Book 2023 The Editor(s) (if applicable) and The Author(s), u

[復制鏈接]
樓主: ACORN
11#
發(fā)表于 2025-3-23 09:47:23 | 只看該作者
12#
發(fā)表于 2025-3-23 14:12:39 | 只看該作者
13#
發(fā)表于 2025-3-23 18:33:47 | 只看該作者
Industrial Applications of Game Reinforcement Learning,control?of industrial process operation, particularly dual-rate rougher flotation operation, and performance optimization problems for large-scale industrial processes. To earn high economic profit viewed as one of the operational indices, we present two kinds of off-policy RL methods to learn the o
14#
發(fā)表于 2025-3-24 00:55:27 | 只看該作者
15#
發(fā)表于 2025-3-24 02:42:14 | 只看該作者
Off-Policy Game Reinforcement Learning,of multi-agent systems. In contrast to traditional control protocols, which require complete knowledge of agent dynamics, the presented algorithm is a model-free approach, in that it solves the optimal synchronization problem?without knowing any knowledge of the agent dynamics.
16#
發(fā)表于 2025-3-24 08:03:05 | 只看該作者
17#
發(fā)表于 2025-3-24 11:18:05 | 只看該作者
Book 2023rning-based feedback control. The authors address a wide variety of systems including work on nonlinear, networked, multi-agent and multi-player systems...?..A concise description of classical reinforcement learning (RL), the basics of optimal control with dynamic programming and network control arc
18#
發(fā)表于 2025-3-24 15:57:03 | 只看該作者
19#
發(fā)表于 2025-3-24 19:40:11 | 只看該作者
Control Using Reinforcement Learning, such that the . control problem can be finally solved for linear multi-player systems without the knowledge of system dynamics. Besides, rigorous proofs of algorithm convergence and unbiasedness of solutions are presented. Simulation results demonstrate the effectiveness of the proposed method.
20#
發(fā)表于 2025-3-25 00:45:21 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-12 22:37
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
麦盖提县| 元谋县| 宁海县| 潜山县| 库伦旗| 大关县| 许昌县| 桂平市| 德惠市| 仙桃市| 敦化市| 陵水| 利川市| 灵石县| 宜州市| 闽清县| 合水县| 色达县| 盐山县| 林口县| 绥棱县| 普宁市| 中宁县| 汤阴县| 龙陵县| 特克斯县| 休宁县| 商水县| 随州市| 怀集县| 永昌县| 高阳县| 望江县| 南汇区| 电白县| 新河县| 桓台县| 隆昌县| 手游| 外汇| 瑞金市|