找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Regularization of Ill-Posed Problems by Iteration Methods; S. F. Gilyazov,N. L. Gol’dman Book 2000 Springer Science+Business Media B.V. 20

[復(fù)制鏈接]
樓主: 嚴(yán)峻
11#
發(fā)表于 2025-3-23 10:52:08 | 只看該作者
12#
發(fā)表于 2025-3-23 17:36:06 | 只看該作者
13#
發(fā)表于 2025-3-23 21:37:58 | 只看該作者
14#
發(fā)表于 2025-3-23 22:59:51 | 只看該作者
Regularizing Algorithms for Linear Ill-Posed Problems: Unified Approach,Let .: . be a linear bounded operator between Hubert spaces . and .. For any element . ? . we shall consider the set . In a general case the set .. can be empty.
15#
發(fā)表于 2025-3-24 06:26:44 | 只看該作者
Iteration Steepest Descent Methods for Linear Operator Equations,Our investigation of regularizing properties of iterative methods for the stable solution of ill-posed problems starts with analysis of steepest descent methods.
16#
發(fā)表于 2025-3-24 10:29:21 | 只看該作者
Iteration Conjugate Direction Methods for Linear Operator Equations,Iterative methods of steepest descent considered in Chapter 2 provide the best rate of convergence in each iteration of the process. However such a ‘local optimal strategy’ is not so suitable for solving the problem (1.1.1), (1.1.6) of computation of a global minimum of a quadratic functional.
17#
發(fā)表于 2025-3-24 12:41:02 | 只看該作者
Iteration Steepest Descent Methods for Nonlinear Operator Equations,In this chapter we investigate regularizing iteration methods for approximate solution of the nonlinear operator equation . where .: . → . is a nonlinear operator, . and . are the Hilbert spaces, . ?. is the given element. We assume that the equation (4.1.1) has the unique solution ..? ..
18#
發(fā)表于 2025-3-24 18:11:22 | 只看該作者
Iteration Methods for Ill-Posed Constrained Minimization Problems,Let us consider the problem of an approximate solution of a nonlinear operator equation of the first kind . where . (.): . → . is defined on the nonempty set . (.) ? . and . are Hubert spaces.
19#
發(fā)表于 2025-3-24 22:01:09 | 只看該作者
Introduction,ot exist, and even if they exist they need not be unique and stable, i.e., continuously depending on the input data. To obtain stable numerical solutions of problems for which the Hadamard conditions of correctness [83, 84] are not satisfied, the regularization methods must be applied.
20#
發(fā)表于 2025-3-25 03:12:56 | 只看該作者
Descriptive Regularization Algorithms on the basis of the Conjugate Gradient Projection method,aditional way to regularize them, i.e., to convert them into related well-posed problems, is applied. This way is based on utilization of quantitative information about the level of errors in the input data and on greatly general . information pertaining to smoothness of the solution. This ensures a
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 20:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吉木萨尔县| 云安县| 吉林省| 蛟河市| 赤城县| 浦县| 佛冈县| 镇平县| 舞钢市| 宁阳县| 舞阳县| 长春市| 高唐县| 凉城县| 娄烦县| 沧源| 宜宾市| 荔浦县| 漳州市| 宿州市| 高雄市| 米易县| 吕梁市| 孟连| 东乌珠穆沁旗| 英吉沙县| 祁阳县| 东台市| 红桥区| 庆元县| 阿克| 平阳县| 玉溪市| 马公市| 分宜县| 洛南县| 青阳县| 阳原县| 江城| 滕州市| 青浦区|