找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Regularity and Irregularity of Superprocesses with (1 + β)-stable Branching Mechanism; Leonid Mytnik,Vitali Wachtel Book 2016 The Author(s

[復(fù)制鏈接]
查看: 7589|回復(fù): 37
樓主
發(fā)表于 2025-3-21 19:01:39 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Regularity and Irregularity of Superprocesses with (1 + β)-stable Branching Mechanism
編輯Leonid Mytnik,Vitali Wachtel
視頻videohttp://file.papertrans.cn/826/825560/825560.mp4
概述The book may serve as an introductory text for a graduate course.Self-contained presentation of regularity properties of stable superprocesses and proofs of main results.Only book discussing multifrac
叢書(shū)名稱SpringerBriefs in Probability and Mathematical Statistics
圖書(shū)封面Titlebook: Regularity and Irregularity of Superprocesses with (1 + β)-stable Branching Mechanism;  Leonid Mytnik,Vitali Wachtel Book 2016 The Author(s
描述.This is the only book discussing multifractal properties of densities of stable superprocesses, containing latest achievements while also giving?the reader a comprehensive picture of the state of the art in this area. It is a self-contained presentation of regularity properties of stable?superprocesses and proofs of main results and can serve as an introductory text for a graduate course. There are many heuristic explanations of technically involved results and proofs and the reader can get a clear intuitive picture behind the results and techniques..?
出版日期Book 2016
關(guān)鍵詞Holder Continuity; Hausdorff Dimension; Multifractal Spectrum; Local Unboundedness; Superprocess; Stable
版次1
doihttps://doi.org/10.1007/978-3-319-50085-0
isbn_softcover978-3-319-50084-3
isbn_ebook978-3-319-50085-0Series ISSN 2365-4333 Series E-ISSN 2365-4341
issn_series 2365-4333
copyrightThe Author(s) 2016
The information of publication is updating

書(shū)目名稱Regularity and Irregularity of Superprocesses with (1 + β)-stable Branching Mechanism影響因子(影響力)




書(shū)目名稱Regularity and Irregularity of Superprocesses with (1 + β)-stable Branching Mechanism影響因子(影響力)學(xué)科排名




書(shū)目名稱Regularity and Irregularity of Superprocesses with (1 + β)-stable Branching Mechanism網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Regularity and Irregularity of Superprocesses with (1 + β)-stable Branching Mechanism網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Regularity and Irregularity of Superprocesses with (1 + β)-stable Branching Mechanism被引頻次




書(shū)目名稱Regularity and Irregularity of Superprocesses with (1 + β)-stable Branching Mechanism被引頻次學(xué)科排名




書(shū)目名稱Regularity and Irregularity of Superprocesses with (1 + β)-stable Branching Mechanism年度引用




書(shū)目名稱Regularity and Irregularity of Superprocesses with (1 + β)-stable Branching Mechanism年度引用學(xué)科排名




書(shū)目名稱Regularity and Irregularity of Superprocesses with (1 + β)-stable Branching Mechanism讀者反饋




書(shū)目名稱Regularity and Irregularity of Superprocesses with (1 + β)-stable Branching Mechanism讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:51:06 | 只看該作者
Stochastic representation for , and description of the approach for determining regularity,Let . be a (2,?.,?.)-superprocess, that is, it satisfies the martingale problem?(.). The following lemma contains a semimartingale decomposition of . which includes stochastic integrals with respect to discontinuous martingale measures.
板凳
發(fā)表于 2025-3-22 02:41:38 | 只看該作者
地板
發(fā)表于 2025-3-22 07:45:43 | 只看該作者
Dichotomy for densities,The non-random part . ? ..(.) is differentiable. The continuity of ..(??) follows from the classical
5#
發(fā)表于 2025-3-22 09:56:06 | 只看該作者
,Pointwise H?lder exponent at a given point: proof of Theorem 1.3,Let us first give a heuristic explanation for the value of .. According to Lemmas?. and?., the maximal jump at time . and spatial point . near point ..?=?0 is of order ((. ? .)?|?.?|?)..
6#
發(fā)表于 2025-3-22 16:25:13 | 只看該作者
Elements of the proof of Theorem 1.5 and Proposition 1.6,The spectrum of singularities of .. coincides with that of .. Consequently, to prove Theorem ., we have to determine Hausdorff dimensions of the sets . and this is done in the next two sections.
7#
發(fā)表于 2025-3-22 17:54:49 | 只看該作者
Leonid Mytnik,Vitali WachtelThe book may serve as an introductory text for a graduate course.Self-contained presentation of regularity properties of stable superprocesses and proofs of main results.Only book discussing multifrac
8#
發(fā)表于 2025-3-22 23:54:40 | 只看該作者
9#
發(fā)表于 2025-3-23 02:18:16 | 只看該作者
SpringerBriefs in Probability and Mathematical Statisticshttp://image.papertrans.cn/r/image/825560.jpg
10#
發(fā)表于 2025-3-23 07:31:10 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 18:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
义马市| 孟州市| 临泽县| 蒲江县| 开化县| 邹平县| 新乐市| 尼勒克县| 尚志市| 海淀区| 江西省| 凤山县| 营山县| 玉溪市| 平原县| 文山县| 武冈市| 苏州市| 阳江市| 新河县| 兴国县| 泰来县| 江阴市| 永和县| 鄂伦春自治旗| 昆明市| 商城县| 河津市| 青田县| SHOW| 平陆县| 郧西县| 贵港市| 鹿泉市| 锡林郭勒盟| 樟树市| 江川县| 浮山县| 连城县| 翼城县| 思茅市|