找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Regular and Chaotic Dynamics; A. J. Lichtenberg,M. A. Lieberman Book 1992Latest edition Springer Science+Business Media New York 1992 Hami

[復制鏈接]
查看: 29198|回復: 40
樓主
發(fā)表于 2025-3-21 19:33:01 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Regular and Chaotic Dynamics
編輯A. J. Lichtenberg,M. A. Lieberman
視頻videohttp://file.papertrans.cn/826/825546/825546.mp4
叢書名稱Applied Mathematical Sciences
圖書封面Titlebook: Regular and Chaotic Dynamics;  A. J. Lichtenberg,M. A. Lieberman Book 1992Latest edition Springer Science+Business Media New York 1992 Hami
描述What‘s in a name? The original title of our book, Regular and Stochastic Motion, was chosen to emphasize Hamiltonian dynamics and the physical motion of bodies. The new edition is more evenhanded, with considerably more discussion of dissipative systems and dynamics not involving physical motion. To reflect this partial change of emphasis, we have substituted the more general terms in our title. The common usage of the new terms clarifies the emphasis of the book. The main change in the book has been to expand the sections on dissipative dynamics, including discussion of renormalization, circle maps, intermittancy, crises, transient chaos, multifractals, reconstruction, and coupled mapping systems. These topics were either mainly in the mathemati- cal literature or essentially unstudied when our first edition was written. The volume of work in these areas has surpassed that in Hamiltonian dynamics within the past few years. We have also made changes in the Hamiltonian sections, adding many new topics such as more general transformation and stability theory, connected stochasticity in two-dimensional maps, converse KAM theory, new topics in diffusion theory, and an approach to equil
出版日期Book 1992Latest edition
關鍵詞Hamiltonsche Bewegungsgleichungen; Motion; Nichtlineare Schwingung; Stochastischer Prozess; St?rung (Mat
版次2
doihttps://doi.org/10.1007/978-1-4757-2184-3
isbn_softcover978-1-4419-3100-9
isbn_ebook978-1-4757-2184-3Series ISSN 0066-5452 Series E-ISSN 2196-968X
issn_series 0066-5452
copyrightSpringer Science+Business Media New York 1992
The information of publication is updating

書目名稱Regular and Chaotic Dynamics影響因子(影響力)




書目名稱Regular and Chaotic Dynamics影響因子(影響力)學科排名




書目名稱Regular and Chaotic Dynamics網(wǎng)絡公開度




書目名稱Regular and Chaotic Dynamics網(wǎng)絡公開度學科排名




書目名稱Regular and Chaotic Dynamics被引頻次




書目名稱Regular and Chaotic Dynamics被引頻次學科排名




書目名稱Regular and Chaotic Dynamics年度引用




書目名稱Regular and Chaotic Dynamics年度引用學科排名




書目名稱Regular and Chaotic Dynamics讀者反饋




書目名稱Regular and Chaotic Dynamics讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 22:06:44 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:42:13 | 只看該作者
地板
發(fā)表于 2025-3-22 07:07:37 | 只看該作者
Book 1992Latest editionof bodies. The new edition is more evenhanded, with considerably more discussion of dissipative systems and dynamics not involving physical motion. To reflect this partial change of emphasis, we have substituted the more general terms in our title. The common usage of the new terms clarifies the emp
5#
發(fā)表于 2025-3-22 09:37:54 | 只看該作者
6#
發(fā)表于 2025-3-22 14:35:38 | 只看該作者
7#
發(fā)表于 2025-3-22 19:56:29 | 只看該作者
Transition to Global Stochasticity,iated with resonances. These regions persist for any nonzero perturbation strength ., although their area tends to zero as . → 0. Therefore, there is no abrupt “transition to stochasticity” at some critical ., and one must define carefully the meaning of any such criterion.
8#
發(fā)表于 2025-3-22 23:44:26 | 只看該作者
Stochastic Motion and Diffusion,t exist, a complete description of the motion is generally impractical. We can then seek to treat the motion in a statistical sense. That is, the evolution of certain average quantities can be determined, rather than the trajectory corresponding to a given set of initial conditions (e.g., Chandrasek
9#
發(fā)表于 2025-3-23 02:31:00 | 只看該作者
10#
發(fā)表于 2025-3-23 06:30:00 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 10:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
广南县| 砀山县| 嵊泗县| 巴东县| 中方县| 云霄县| 麻阳| 水城县| 临武县| 曲沃县| 油尖旺区| 古丈县| 渭南市| 潮安县| 鹿泉市| 越西县| 鸡西市| 惠来县| 安康市| 萍乡市| 佛坪县| 麻阳| 新竹县| 延津县| 昌宁县| 巴彦县| 平邑县| 青州市| 白河县| 科尔| 盐津县| 玉门市| 哈巴河县| 磐安县| 社旗县| 宜昌市| 林口县| 扬中市| 扬州市| 呼玛县| 永和县|