找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Regelungstechnik 1; Systemtheoretische G Jan Lunze Textbook 19961st edition Springer-Verlag Berlin Heidelberg 1996 Automatisierungstechnik.

[復制鏈接]
樓主: 從未沮喪
21#
發(fā)表于 2025-3-25 04:42:50 | 只看該作者
22#
發(fā)表于 2025-3-25 11:27:27 | 只看該作者
23#
發(fā)表于 2025-3-25 13:20:10 | 只看該作者
Beispiele für technische und nichttechnische Regelungsaufgabengungen hinzuweisen, die bei den in sp?teren Kapiteln behandelten Beispielen nur teilweise beachtet werden k?nnen. Es zeigt sich dabei, da? sich die aus sehr unterschiedlichen Anwendungsgebieten stammenden Aufgaben in gleichartiger Weise formulieren lassen.
24#
發(fā)表于 2025-3-25 17:36:34 | 只看該作者
Beschreibung linearer Systeme im Zeitbereichgeführt. Dieses Modell basiert auf dem fundamentalen systemtheoretischen Begriff des ?Zustandes“ eines dynamischen Systems. Es ist eine Standardform für Modelle, auf denen viele Analyse- und Entwurfsverfahren für Regler aufbauen.
25#
發(fā)表于 2025-3-25 23:47:24 | 只看該作者
26#
發(fā)表于 2025-3-26 04:02:12 | 只看該作者
27#
發(fā)表于 2025-3-26 07:23:48 | 只看該作者
Reglerentwurf anhand des PN—Bildes des geschlossenen Kreisesr Pole des geschlossenen Kreises von der Reglerverst?rkung beschreibt. Mit Hilfe der Konstruktionsvorschriften für Wurzelortskurven k?nnen aus gegebenen Forderungen an die Lage der Pole des geschlossenen Kreises sowohl die Reglerstruktur als auch die Reglerparameter bestimmt werden.
28#
發(fā)表于 2025-3-26 12:06:35 | 只看該作者
Reglerentwurf anhand der Frequenzkennlinie der offenen Ketterch eine geeignete Wahl des Reglers erfüllt werden müssen. Dann wird gezeigt, wie Entwurfsaufgaben gel?st werden k?nnen, bei denen einerseits das Führungsverhalten und andererseits das St?rverhalten des Regelkreises ma?gebend für die Erfüllung der gestellten Güteforderungen ist.
29#
發(fā)表于 2025-3-26 15:18:51 | 只看該作者
30#
發(fā)表于 2025-3-26 16:56:09 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 18:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
津南区| 嘉禾县| 若尔盖县| 徐闻县| 治县。| 鄂托克旗| 方山县| 阿拉尔市| 酉阳| 宝山区| 荣昌县| 阳春市| 宿州市| 峨边| 抚顺县| 岫岩| 济宁市| 五常市| 裕民县| 萝北县| 忻城县| 哈尔滨市| 德昌县| 丰顺县| 永靖县| 响水县| 宾川县| 南涧| 和林格尔县| 黎平县| 沙河市| 丰城市| 双桥区| 中超| 太仓市| 东台市| 克东县| 乌审旗| 峡江县| 扶沟县| 大渡口区|