找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Refinement in Z and Object-Z; Foundations and Adva John Derrick,Eerke A. Boiten Book 2014Latest edition Springer-Verlag London 2014 Formal

[復制鏈接]
樓主: CRUST
21#
發(fā)表于 2025-3-25 03:41:06 | 只看該作者
22#
發(fā)表于 2025-3-25 09:44:28 | 只看該作者
23#
發(fā)表于 2025-3-25 15:23:33 | 只看該作者
Refinement in Object-Zequences of the different interpretation of preconditions. We also consider how weak refinement and non-atomic refinement may be applied to Object-Z. Finally, we discuss the relation between refinement, and two other important concepts in object orientation: subtyping and inheritance.
24#
發(fā)表于 2025-3-25 19:36:26 | 只看該作者
25#
發(fā)表于 2025-3-25 22:17:22 | 只看該作者
https://doi.org/10.1007/978-1-4471-5355-9Formal Methods; Interfaces; Non-atomic Refinement; Object Orientation; Object-Z; Refinement in Object-Z; S
26#
發(fā)表于 2025-3-26 02:25:54 | 只看該作者
27#
發(fā)表于 2025-3-26 07:22:22 | 只看該作者
Data Refinement and Simulationse we look at how operations in a specification are modelled as partial relations. The application of the simulation rules to specifications with partial operations leads to the simulation rules as they are normally presented.
28#
發(fā)表于 2025-3-26 11:31:20 | 只看該作者
Refinement in Zrate the issues involved with this derivation, we first derive rules for Z ADTs without inputs and outputs, and then show the more complicated derivation in the presence of inputs and outputs. Finally, this chapter presents a collection of examples of data refinement in Z.
29#
發(fā)表于 2025-3-26 15:55:54 | 只看該作者
30#
發(fā)表于 2025-3-26 17:51:03 | 只看該作者
An Introduction to Znder consideration. In this chapter we present the notations for logic, sets and relations, the schema notation and the schema calculus, leading to the definition of an abstract data type in the “states-and-operations” style, and the first example refinement.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-29 14:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
黎城县| 汝阳县| 元氏县| 河曲县| 凭祥市| 霞浦县| 万安县| 泸定县| 舟曲县| 宽甸| 海南省| 稷山县| 名山县| 岑溪市| 武义县| 且末县| 元氏县| 荆门市| 泽普县| 静安区| 宜城市| 剑阁县| 长泰县| 广元市| 桑植县| 海南省| 高淳县| 宁远县| 新干县| 古交市| 望奎县| 镶黄旗| 常熟市| 武川县| 金坛市| 准格尔旗| 宁明县| 鄱阳县| 平舆县| 丽江市| 攀枝花市|