找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Recommender Systems: Algorithms and their Applications; Pushpendu Kar,Monideepa Roy,Sujoy Datta Book 2024 The Editor(s) (if applicable) an

[復制鏈接]
樓主: Corrugate
11#
發(fā)表于 2025-3-23 10:51:14 | 只看該作者
978-981-97-0540-5The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
12#
發(fā)表于 2025-3-23 15:55:08 | 只看該作者
Recommender Systems: Algorithms and their Applications978-981-97-0538-2Series ISSN 2730-7484 Series E-ISSN 2730-7492
13#
發(fā)表于 2025-3-23 18:20:59 | 只看該作者
Steps in Building a Recommendation Engine,In this chapter, we discuss the steps one needs to keep in mind while designing an efficient recommender system. We also see what are the design parameters for rating the efficiency of a recommender system. Then the steps to build such a system are discussed along with a generic architecture.
14#
發(fā)表于 2025-3-24 01:09:04 | 只看該作者
15#
發(fā)表于 2025-3-24 05:07:34 | 只看該作者
16#
發(fā)表于 2025-3-24 08:27:55 | 只看該作者
17#
發(fā)表于 2025-3-24 13:41:10 | 只看該作者
18#
發(fā)表于 2025-3-24 15:51:32 | 只看該作者
2730-7484 of recommender system in healthcare monitoring and military.The book includes a thorough examination of the many types of algorithms for recommender systems, as well as a comparative analysis of them. It addresses the problem of dealing with the large amounts of data generated by the recommender sy
19#
發(fā)表于 2025-3-24 19:00:08 | 只看該作者
Collaborative Filtering and Content-Based Systems, model-based methods. The chapter discusses what are the features of and differences between the two methods. The basic components of the content-based systems are also discussed. Both the systems have their advantages and disadvantages which are also discussed here.
20#
發(fā)表于 2025-3-24 23:23:31 | 只看該作者
Big Data Behind Recommender Systems,mportant. We also see how recommender systems can benefit from using big data, what the types of data stored and what the challenges are. Finally, some examples show how exactly it is used by the recommender systems by taking the example of Twitter.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-29 04:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
长泰县| 兴义市| 临漳县| 商洛市| 栾川县| 商丘市| 吉首市| 河津市| 神农架林区| 临安市| 尖扎县| 东明县| 玛纳斯县| 南开区| 崇明县| 高雄市| 南京市| 竹山县| 波密县| 马鞍山市| 临朐县| 万盛区| 克拉玛依市| 万山特区| 哈尔滨市| 拜城县| 阿荣旗| 北安市| 东平县| 沙洋县| 潮州市| 芦山县| 乐都县| 历史| 漾濞| 青铜峡市| 桓台县| 田阳县| 东源县| 吕梁市| 常德市|