找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Recommender Systems Handbook; Francesco Ricci,Lior Rokach,Bracha Shapira Book 2022Latest edition Springer Science+Business Media, LLC, par

[復(fù)制鏈接]
樓主: 表范圍
51#
發(fā)表于 2025-3-30 09:33:42 | 只看該作者
Semantics and Content-Based Recommendationson . features, which are obtained by processing . or . characteristics of the items. In this setting, the adoption of semantics-aware representations can be very useful to build a more precise representation of users and items, and, in turn, to generate better recommendations. To this end, this chap
52#
發(fā)表于 2025-3-30 16:01:34 | 只看該作者
53#
發(fā)表于 2025-3-30 16:35:31 | 只看該作者
Adversarial Recommender Systems: Attack, Defense, and Advancesst them. Recently, recommender systems have been shown vulnerable to adversarial attacks that force the models to produce misleading recommendations. For instance, adversaries can attempt to push target items into high/low positions in the recommendation lists by inserting optimized fake profiles in
54#
發(fā)表于 2025-3-30 21:48:02 | 只看該作者
55#
發(fā)表于 2025-3-31 03:59:20 | 只看該作者
People-to-People Reciprocal Recommenderss they must satisfy the preferences and needs of the two parties involved in the recommendation. In contrast, the traditional items-to-people recommenders are one sided and must satisfy only the preference of the person for whom the recommendation is generated. We review the characteristics of recip
56#
發(fā)表于 2025-3-31 07:35:34 | 只看該作者
Natural Language Processing for Recommender Systemsformation on users’ preferences or items’ traits. Arguably, the most meaningful signal for recommenders is textual data, which includes examples like user-generated reviews, textual-item descriptions and even conversational interaction in natural language. Additionally, the output of a typical recom
57#
發(fā)表于 2025-3-31 11:38:32 | 只看該作者
Design and Evaluation of Cross-Domain Recommender Systemsms, reflecting a spectrum of their tastes and interests. Leveraging all the user preferences available in several systems or domains may be beneficial for generating more encompassing user models and better recommendations, e.g., through mitigating the cold-start and sparsity problems, or enabling c
58#
發(fā)表于 2025-3-31 16:34:20 | 只看該作者
59#
發(fā)表于 2025-3-31 19:35:07 | 只看該作者
Evaluating Recommender Systemsses a system designer that wishes to employ a recommendater system must choose between a set of candidate approaches. A first step towards selecting an appropriate algorithm is to decide which properties of the application to focus upon when making this choice. Indeed, recommender systems have a var
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 10:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鹿邑县| 崇义县| 陇西县| 郸城县| 西安市| 长泰县| 信宜市| 延庆县| 嘉义市| 天长市| 德令哈市| 虹口区| 东兰县| 枣庄市| 神池县| 广昌县| 邵阳市| 兖州市| 肥乡县| 罗田县| 偃师市| 七台河市| 哈密市| 花垣县| 庆云县| 泰宁县| 固阳县| 永靖县| 永仁县| 瓦房店市| 乌兰县| 冷水江市| 广宗县| 云和县| 静海县| 鱼台县| 日土县| 徐汇区| 达拉特旗| 永德县| 建平县|