找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Recommender Systems; The Textbook Charu C. Aggarwal Textbook 2016 Springer Nature Switzerland AG 2016 Collaborative filtering.Data mining.R

[復制鏈接]
樓主: 浮標
11#
發(fā)表于 2025-3-23 10:07:41 | 只看該作者
Social and Trust-Centric Recommender Systems,hough some of these methods are discussed in Chapter ., the focus of this chapter is primarily on recommending nodes and links in network settings. Social context is a much broader concept, not only including social (network) links, but also various types of side information, such as tags or folkson
12#
發(fā)表于 2025-3-23 17:13:50 | 只看該作者
Attack-Resistant Recommender Systems,com and Epinions.com. Like any other data-mining system, the effectiveness of a recommender system depends almost exclusively on the quality of the data available to it. Unfortunately, there are significant motivations for participants to submit incorrect feedback about items for personal gain or fo
13#
發(fā)表于 2025-3-23 22:03:32 | 只看該作者
14#
發(fā)表于 2025-3-23 23:18:38 | 只看該作者
An Introduction to Recommender Systems, click of a mouse. A typical methodology to provide feedback is in the form of ., in which users select numerical values from a specific evaluation system (e.g., five-star rating system) that specify their likes and dislikes of various items.
15#
發(fā)表于 2025-3-24 03:47:21 | 只看該作者
16#
發(fā)表于 2025-3-24 07:40:13 | 只看該作者
17#
發(fā)表于 2025-3-24 11:51:57 | 只看該作者
18#
發(fā)表于 2025-3-24 16:19:29 | 只看該作者
Evaluating Recommender Systems,The evaluation of collaborative filtering shares a number of similarities with that of classification. This similarity is due to the fact that collaborative filtering can be viewed as a generalization of the classification and regression modeling problem (cf. section?. of Chapter?.).
19#
發(fā)表于 2025-3-24 19:38:16 | 只看該作者
Time- and Location-Sensitive Recommender Systems,In many real scenarios, the buying and rating behaviors of customers are associated with temporal information. For example, the ratings in the Netflix Prize data set are associated with a “.” variable, and it was eventually shown?[310] how the temporal component could be used to improve the rating predictions.
20#
發(fā)表于 2025-3-25 00:16:43 | 只看該作者
Charu C. AggarwalIncludes exercises and assignments, with instructor access to a solutions manual.Illustrations throughout aid in comprehension.Provides many examples to simplify exposition and facilitate in learning.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 21:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
龙南县| 东乌珠穆沁旗| 老河口市| 惠东县| 黎川县| 陈巴尔虎旗| 敦煌市| 江山市| 汉寿县| 正蓝旗| 南木林县| 宁强县| 曲阜市| 正定县| 泽库县| 阜南县| 阳朔县| 融水| 嵊泗县| 平江县| 华池县| 澄城县| 运城市| 舟山市| 临澧县| 紫金县| 同仁县| 峨眉山市| 迁西县| 昌邑市| 盐边县| 富平县| 通海县| 米脂县| 英超| 元朗区| 江口县| 绿春县| 大渡口区| 新津县| 当涂县|