找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Recent Trends in Toeplitz and Pseudodifferential Operators; The Nikolai Vasilevs Roland Duduchava,Israel Gohberg,Vladimir Rabinovic Book 20

[復(fù)制鏈接]
樓主: Deleterious
21#
發(fā)表于 2025-3-25 06:05:45 | 只看該作者
The Laplace-Beltrami Operator on a Rotationally Symmetric Surface,ich standard separation of variables works, it is hoped that the study of this example can nevertheless bring to light some features which may subsist in the more general framework of the calculus on compact manifolds with cusps due to V. Rabinovich et al. (1997).
22#
發(fā)表于 2025-3-25 09:55:53 | 只看該作者
23#
發(fā)表于 2025-3-25 13:03:42 | 只看該作者
24#
發(fā)表于 2025-3-25 18:29:09 | 只看該作者
On the Structure of the Eigenvectors of Large Hermitian Toeplitz Band Matrices,o infinity. The main result, which is based on certain assumptions, describes the structure of the eigenvectors in terms of the Laurent polynomial that generates the matrices up to an error term that decays exponentially fast. This result is applicable to both extreme and inner eigenvectors.
25#
發(fā)表于 2025-3-25 20:45:48 | 只看該作者
Complete Quasi-wandering Sets and Kernels of Functional Operators,tors under consideration either consist of a zero element or contain a subset isomorphic to a space .), where . has a positive Lebesgue measure. Consequently, such operators are Fredholm if and only if they are invertible.
26#
發(fā)表于 2025-3-26 02:48:47 | 只看該作者
27#
發(fā)表于 2025-3-26 06:08:32 | 只看該作者
On the Bergman Theory for Solenoidal and Irrotational Vector Fields, I: General Theory,Bergman space and the Bergman reproducing kernel; main properties of them are studied. Among other objects of our interest are: the analogues of the Bergman projections; the behavior of the Bergman theory for a given domain whenever the domain is transformed by a conformal map.
28#
發(fā)表于 2025-3-26 09:28:45 | 只看該作者
29#
發(fā)表于 2025-3-26 16:11:41 | 只看該作者
30#
發(fā)表于 2025-3-26 18:53:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 04:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
镇江市| 阜阳市| 荆州市| 阿鲁科尔沁旗| 安新县| 北辰区| 永清县| 屏东市| 右玉县| 富平县| 凯里市| 措美县| 安义县| 循化| 兰考县| 尚志市| 石泉县| 河曲县| 玉山县| 阿拉尔市| 枣阳市| 马公市| 运城市| 区。| 津南区| 明光市| 独山县| 临漳县| 淅川县| 绥芬河市| 阜平县| 洛阳市| 常宁市| 资源县| 色达县| 绥阳县| 丹凤县| 五家渠市| 正宁县| 三原县| 台山市|