找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Recent Trends in Applied Mathematics; Select Proceedings o S. R. Mishra,T. N. Dhamala,O. D. Makinde Conference proceedings 2021 The Editor(

[復(fù)制鏈接]
樓主: 表范圍
11#
發(fā)表于 2025-3-23 12:34:47 | 只看該作者
Archana Tiwarial engineering in the context of harmonic analysis. .This two-volume set consists of contributions from speakers at the February Fourier Talks (FFT) from 2006-2011. The FFT are organized by the Norbert Wiener Center in the Department of Mathematics at the University of Maryland, College Park. These
12#
發(fā)表于 2025-3-23 17:40:37 | 只看該作者
Atanu Majiis an orbit . of a countable abelian group . acting continuously on ., and each .∈. is the sum of the terms ., .. Such a recovery formula generalizes the well-known Shannon sampling formula. This chapter presents a general discussion of sampling theory and introduces several new classes of sampling
13#
發(fā)表于 2025-3-23 19:52:54 | 只看該作者
B. Nayak,R. S. Tripathyal group. Elements of this group can always be factored into lifting matrices with half-sample symmetric (HS) off-diagonal lifting filters; such linear phase lifting factorizations are specified in the ISO/IEC JPEG2000 image coding standard. Half-sample symmetric unimodular filter banks do not form
14#
發(fā)表于 2025-3-24 01:32:27 | 只看該作者
15#
發(fā)表于 2025-3-24 03:33:46 | 只看該作者
Kamala Kumar Pradhan,Ashok Misra,Saroj Kumar Mishraution on phase space (called the Gabor symbol), followed by an inverse short-time Fourier transform, allowing different localizing windows for the forward and inverse transforms. This chapter focuses on the following broad questions. Firstly, for a given pair of forward and inverse windows, which li
16#
發(fā)表于 2025-3-24 09:16:31 | 只看該作者
17#
發(fā)表于 2025-3-24 11:16:06 | 只看該作者
18#
發(fā)表于 2025-3-24 16:10:56 | 只看該作者
Mamta Kumari,P. K. Denalysis.Contains contributions from a wide range of practiti.This volume consists of contributions spanning a wide spectrum of harmonic analysis and its applications written by speakers at the February Fourier Talks from 2002 – 2013. Containing cutting-edge results by an impressive array of mathemat
19#
發(fā)表于 2025-3-24 19:23:56 | 只看該作者
20#
發(fā)表于 2025-3-24 23:43:28 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 06:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
霍邱县| 绥江县| 额尔古纳市| 汨罗市| 长丰县| 静海县| 科技| 滨海县| 云南省| 临安市| 宁安市| 文水县| 玉屏| 新干县| 贵南县| 蒙城县| 兴文县| 城市| 江孜县| 成安县| 栖霞市| 浮山县| 莱州市| 偃师市| 普宁市| 荥经县| 礼泉县| 东城区| 金门县| 永福县| 东阿县| 昔阳县| 凤城市| 宁波市| 中卫市| 海门市| 江华| 庆城县| 牡丹江市| 诸城市| 梅河口市|