找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Recent Trends in Applied Artificial Intelligence; 26th International C Moonis Ali,Tibor Bosse,Jan Treur Conference proceedings 2013 Springe

[復制鏈接]
樓主: gratuity
21#
發(fā)表于 2025-3-25 03:32:13 | 只看該作者
Predicting Human Behavior in Crowds: Cognitive Modeling versus Neural Networks effective measures might be crucial to avoid severe consequences in case the crowd goes out of control. Recently, a number of simulation models have been developed for crowd behavior and the descriptive capabilities of these models have been shown. In this paper the aim is to judge the predictive c
22#
發(fā)表于 2025-3-25 10:34:08 | 只看該作者
23#
發(fā)表于 2025-3-25 11:47:20 | 只看該作者
24#
發(fā)表于 2025-3-25 17:00:07 | 只看該作者
Computing the Consensus Permutation in Mallows Distribution by Using Genetic Algorithmsons) of . objects, finding the ranking which best . such dataset. Though different probabilistic models have been proposed to tackle this problem (see e.g. [12]), the so called . is the one that has more attentions [1]. Exact computation of the parameters of this model is an NP-hard problem [19], ju
25#
發(fā)表于 2025-3-25 20:09:56 | 只看該作者
26#
發(fā)表于 2025-3-26 04:05:22 | 只看該作者
27#
發(fā)表于 2025-3-26 05:18:15 | 只看該作者
28#
發(fā)表于 2025-3-26 11:12:00 | 只看該作者
Approximately Recurring Motif Discovery Using Shift Density Estimationer, we propose a novel algorithm for solving this problem that can achieve performance comparable with the most accurate algorithms to solve this problem with a speed comparable to the fastest ones. The main idea behind the proposed algorithm is to convert the problem of ARM discovery into a density
29#
發(fā)表于 2025-3-26 12:41:29 | 只看該作者
An Online Anomalous Time Series Detection Algorithm for Univariate Data Streamscontrol charts, makes it easy to determine when a series begins to differ from other series. Empirical evidence shows that this novel online anomalous time series detection algorithm performs very well, while being efficient in terms of time complexity, when compared to approaches previously discuss
30#
發(fā)表于 2025-3-26 19:32:31 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-24 11:51
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
中卫市| 丰镇市| 华阴市| 鸡西市| 陈巴尔虎旗| 拉孜县| 辽阳市| 阿鲁科尔沁旗| 高要市| 永昌县| 新昌县| 建昌县| 长岭县| 全州县| 浏阳市| 临江市| 鞍山市| 仙桃市| 永福县| 榆树市| 修文县| 东宁县| 乌什县| 多伦县| 安庆市| 额尔古纳市| 南康市| 大冶市| 洛宁县| 东乡| 澄迈县| 大埔县| 阿图什市| 开化县| 延庆县| 伊金霍洛旗| 渝中区| 眉山市| 盱眙县| 青海省| 维西|