找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Recent Trends in Applied Artificial Intelligence; 26th International C Moonis Ali,Tibor Bosse,Jan Treur Conference proceedings 2013 Springe

[復(fù)制鏈接]
樓主: gratuity
21#
發(fā)表于 2025-3-25 03:32:13 | 只看該作者
Predicting Human Behavior in Crowds: Cognitive Modeling versus Neural Networks effective measures might be crucial to avoid severe consequences in case the crowd goes out of control. Recently, a number of simulation models have been developed for crowd behavior and the descriptive capabilities of these models have been shown. In this paper the aim is to judge the predictive c
22#
發(fā)表于 2025-3-25 10:34:08 | 只看該作者
23#
發(fā)表于 2025-3-25 11:47:20 | 只看該作者
24#
發(fā)表于 2025-3-25 17:00:07 | 只看該作者
Computing the Consensus Permutation in Mallows Distribution by Using Genetic Algorithmsons) of . objects, finding the ranking which best . such dataset. Though different probabilistic models have been proposed to tackle this problem (see e.g. [12]), the so called . is the one that has more attentions [1]. Exact computation of the parameters of this model is an NP-hard problem [19], ju
25#
發(fā)表于 2025-3-25 20:09:56 | 只看該作者
26#
發(fā)表于 2025-3-26 04:05:22 | 只看該作者
27#
發(fā)表于 2025-3-26 05:18:15 | 只看該作者
28#
發(fā)表于 2025-3-26 11:12:00 | 只看該作者
Approximately Recurring Motif Discovery Using Shift Density Estimationer, we propose a novel algorithm for solving this problem that can achieve performance comparable with the most accurate algorithms to solve this problem with a speed comparable to the fastest ones. The main idea behind the proposed algorithm is to convert the problem of ARM discovery into a density
29#
發(fā)表于 2025-3-26 12:41:29 | 只看該作者
An Online Anomalous Time Series Detection Algorithm for Univariate Data Streamscontrol charts, makes it easy to determine when a series begins to differ from other series. Empirical evidence shows that this novel online anomalous time series detection algorithm performs very well, while being efficient in terms of time complexity, when compared to approaches previously discuss
30#
發(fā)表于 2025-3-26 19:32:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 11:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁乡县| 改则县| 新田县| 金乡县| 池州市| 图们市| 万荣县| 咸丰县| 陵川县| 米林县| 赤城县| 陆川县| 平阳县| 句容市| 科技| 渭源县| 宣汉县| 许昌市| 安国市| 治多县| 施秉县| 阿坝县| 寿阳县| 社会| 华池县| 东乌| 莱州市| 贵阳市| 鄂温| 乌兰县| 峨边| 巴彦县| 黄冈市| 永福县| 延川县| 英吉沙县| 淅川县| 如东县| 丰城市| 广安市| 洪泽县|