找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Recent Developments in Well-Posed Variational Problems; Roberto Lucchetti,Julian Revalski Book 1995 Springer Science+Business Media Dordre

[復(fù)制鏈接]
查看: 43821|回復(fù): 47
樓主
發(fā)表于 2025-3-21 16:33:31 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Recent Developments in Well-Posed Variational Problems
編輯Roberto Lucchetti,Julian Revalski
視頻videohttp://file.papertrans.cn/824/823240/823240.mp4
叢書名稱Mathematics and Its Applications
圖書封面Titlebook: Recent Developments in Well-Posed Variational Problems;  Roberto Lucchetti,Julian Revalski Book 1995 Springer Science+Business Media Dordre
描述This volume contains several surveys focused on the ideas of approximate solutions, well-posedness and stability of problems in scalar and vector optimization, game theory and calculus of variations. These concepts are of particular interest in many fields of mathematics. The idea of stability goes back at least to J. Hadamard who introduced it in the setting of differential equations; the concept of well-posedness for minimum problems is more recent (the mid-sixties) and originates with A.N. Tykhonov. It turns out that there are connections between the two properties in the sense that a well-posed problem which, at least in principle, is "easy to solve", has a solution set that does not vary too much under perturbation of the data of the problem, i.e. it is "stable". These themes have been studied in depth for minimum problems and now we have a general picture of the related phenomena in this case. But, of course, the same concepts can be studied in other more complicated situations as, e.g. vector optimization, game theory and variational inequalities. Let us mention that in several of these new areas there is not even a unique idea of what should be called approximate solution,
出版日期Book 1995
關(guān)鍵詞Approximation; Calculus of Variations; Interpolation; Optimal control; Vector optimization; calculus; game
版次1
doihttps://doi.org/10.1007/978-94-015-8472-2
isbn_softcover978-90-481-4578-2
isbn_ebook978-94-015-8472-2
copyrightSpringer Science+Business Media Dordrecht 1995
The information of publication is updating

書目名稱Recent Developments in Well-Posed Variational Problems影響因子(影響力)




書目名稱Recent Developments in Well-Posed Variational Problems影響因子(影響力)學(xué)科排名




書目名稱Recent Developments in Well-Posed Variational Problems網(wǎng)絡(luò)公開度




書目名稱Recent Developments in Well-Posed Variational Problems網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Recent Developments in Well-Posed Variational Problems被引頻次




書目名稱Recent Developments in Well-Posed Variational Problems被引頻次學(xué)科排名




書目名稱Recent Developments in Well-Posed Variational Problems年度引用




書目名稱Recent Developments in Well-Posed Variational Problems年度引用學(xué)科排名




書目名稱Recent Developments in Well-Posed Variational Problems讀者反饋




書目名稱Recent Developments in Well-Posed Variational Problems讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:51:35 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:26:28 | 只看該作者
地板
發(fā)表于 2025-3-22 07:18:21 | 只看該作者
Characterizations of Lipschitz Stability in Optimization,pproximations: the pseudo-Lipschitz property, the upperLipschitz property at a point, the existence of a local Lipschitz selection, the strong regularity. Some applications to variational problems are presented.
5#
發(fā)表于 2025-3-22 10:32:52 | 只看該作者
Generic Well-Posedness of Optimization Problems and the Banach-Mazur Game, equipped with the sup-norm ||f||. = sup{| .)|: .}, .), becomes a Banach space. Each .) determines a minimization problem: find x. ∈ . with ..) = inf {.} =: inf (.). We designate this problem by (.). Among the different properties of the minimization problem (.) the following ones are of special int
6#
發(fā)表于 2025-3-22 14:41:34 | 只看該作者
7#
發(fā)表于 2025-3-22 17:15:11 | 只看該作者
8#
發(fā)表于 2025-3-23 00:10:33 | 只看該作者
9#
發(fā)表于 2025-3-23 01:51:28 | 只看該作者
10#
發(fā)表于 2025-3-23 08:38:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 22:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
民权县| 应城市| 崇左市| 温宿县| 丰镇市| 江山市| 双流县| 南和县| 泸西县| 北宁市| 余江县| 河西区| 涪陵区| 图们市| 讷河市| 丰镇市| 凉城县| 株洲县| 海淀区| 焉耆| 桃源县| 南投县| 东平县| 鹤峰县| 杂多县| 和顺县| 茶陵县| 徐闻县| 新源县| 泗洪县| 卫辉市| 汉川市| 蓝山县| 方城县| 孟津县| 钟祥市| 漳浦县| 修水县| 含山县| 宜春市| 曲周县|