找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Recent Developments in Structure-Preserving Algorithms for Oscillatory Differential Equations; Xinyuan Wu,Bin Wang Book 2018 Springer Natu

[復(fù)制鏈接]
樓主: microbe
31#
發(fā)表于 2025-3-26 23:08:57 | 只看該作者
32#
發(fā)表于 2025-3-27 01:23:44 | 只看該作者
An Energy-Preserving and Symmetric Scheme for Nonlinear Hamiltonian Wave Equations,the energy of the underlying Hamiltonian wave equations. To this end, we first define and discuss the bounded operator-argument functions on the underlying domain. We then introduce an operator-variation-of-constants formula, based on which we present an energy-preserving scheme for nonlinear Hamilt
33#
發(fā)表于 2025-3-27 05:40:16 | 只看該作者
,Arbitrarily High-Order Time-Stepping Schemes for Nonlinear Klein–Gordon Equations,ry conditions. We first formulate an abstract ordinary differential equation (ODE) on a suitable infinite–dimensional function space based on the operator spectrum theory. We then introduce an operator-variation-of-constants formula for the nonlinear abstract ODE. The nonlinear stability and converg
34#
發(fā)表于 2025-3-27 10:49:04 | 只看該作者
An Essential Extension of the Finite-Energy Condition for ERKN Integrators Solving Nonlinear Wave Eonlinear wave equations. We begin with an error analysis of ERKN integrators for multi-frequency highly oscillatory systems ., where . is positive semi-definite, .. These highly oscillatory problems arise from the semi-discretisation of conservative or dissipative nonlinear wave equations. The struc
35#
發(fā)表于 2025-3-27 15:20:18 | 只看該作者
Exponential Fourier Collocation Methods for First-Order Differential Equations,. We discuss in detail the connections of EFCMs with trigonometric Fourier collocation methods (TFCMs), the well-known Hamiltonian Boundary Value Methods (HBVMs), Gauss methods and Radau IIA methods. It turns out that the novel EFCMs are an extension, in a strict mathematical sense, of these existing methods in the literature.
36#
發(fā)表于 2025-3-27 20:01:51 | 只看該作者
37#
發(fā)表于 2025-3-27 22:43:22 | 只看該作者
38#
發(fā)表于 2025-3-28 04:56:00 | 只看該作者
39#
發(fā)表于 2025-3-28 09:29:03 | 只看該作者
40#
發(fā)表于 2025-3-28 13:54:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-31 21:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
威海市| 酒泉市| 延边| 鄱阳县| 普格县| 嘉鱼县| 宜都市| 垦利县| 香河县| 青海省| 内乡县| 唐山市| 寿光市| 南木林县| 莱州市| 黄梅县| 兴仁县| 海原县| 长泰县| 绵阳市| 隆林| 鄂托克前旗| 峨眉山市| 砀山县| 泗水县| 丹寨县| 怀柔区| 赤城县| 闸北区| 平阳县| 水城县| 许昌市| 潢川县| 仪征市| 二连浩特市| 常熟市| 伊吾县| 龙山县| 临安市| 阿勒泰市| 武城县|