找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Recent Developments in Stochastic Methods and Applications; ICSM-5, Moscow, Russ Albert N. Shiryaev,Konstantin E. Samouylov,Dmitry Confere

[復制鏈接]
樓主: MOURN
51#
發(fā)表于 2025-3-30 11:00:38 | 只看該作者
Branching Walks with a Finite Set of?Branching Sources and Pseudo-sourcesator describing evolution of the mean numbers of particles both at an arbitrary point and on the entire lattice. The obtained results provide an explicit conditions for the exponential growth of the numbers of particles without any assumptions on jumps variance of the underlying random walk.
52#
發(fā)表于 2025-3-30 15:59:28 | 只看該作者
Random Dimension Low Sample Size Asymptoticsy two independent observations and the angle between these vectors. We generalize and refine the results constructing the second order Chebyshev-Edgeworth expansions under assumption that the data dimension is random and different scaling factors are chosen.
53#
發(fā)表于 2025-3-30 20:08:02 | 只看該作者
Mean-Square Approximation of Iterated Stochastic Integrals from Strong Exponential Milstein and Wagnple Fourier–Legendre series converging in the sense of norm in Hilbert space. In this article, we propose the optimization of the mean-square approximation procedures for iterated stochastic integrals of multiplicities 1 to 3 with respect to the infnite-dimensional .-Wiener process.
54#
發(fā)表于 2025-3-30 23:38:01 | 只看該作者
55#
發(fā)表于 2025-3-31 02:13:08 | 只看該作者
56#
發(fā)表于 2025-3-31 07:12:00 | 只看該作者
57#
發(fā)表于 2025-3-31 13:06:23 | 只看該作者
58#
發(fā)表于 2025-3-31 16:23:46 | 只看該作者
A Sequential Test for the Drift of a Brownian Motion with a Possibility to Change a Decisionon if it turns out to be wrong. The test is based on observation of the posterior mean process and makes the initial decision and, possibly, changes it later, when this process crosses certain thresholds. The solution of the problem is obtained by reducing it to joint optimal stopping and optimal switching problems.
59#
發(fā)表于 2025-3-31 18:21:21 | 只看該作者
60#
發(fā)表于 2025-3-31 22:05:30 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 09:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
潮安县| 葫芦岛市| 新竹县| 鄂州市| 十堰市| 鹿泉市| 醴陵市| 松江区| 乡宁县| 丹巴县| 鄂州市| 米脂县| 五原县| 桑植县| 兴仁县| 故城县| 太康县| 宜兰市| 陕西省| 永春县| 山阳县| 海淀区| 兰西县| 衡阳市| 宜章县| 新龙县| 凤凰县| 崇义县| 邵东县| 铜鼓县| 东港市| 岳阳市| 齐齐哈尔市| 武乡县| 莫力| 金塔县| 轮台县| 基隆市| 高雄市| 安岳县| 始兴县|