找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Recent Developments in Fractals and Related Fields; Conference on Fracta Julien Barral,Stéphane Seuret Conference proceedings 2017 Springer

[復制鏈接]
樓主: Strategy
51#
發(fā)表于 2025-3-30 12:04:51 | 只看該作者
Some Problems on the Boundary of Fractal Geometry and Additive Combinatorics,wth of entropy of convolutions. We explain the main result on ., and derive, via a linearization argument, an analogous result for the action of the affine group on .. We also develop versions of the results for entropy dimension and Hausdorff dimension. The method is applied to two problems on the
52#
發(fā)表于 2025-3-30 12:46:20 | 只看該作者
53#
發(fā)表于 2025-3-30 18:07:59 | 只看該作者
54#
發(fā)表于 2025-3-30 22:29:56 | 只看該作者
55#
發(fā)表于 2025-3-31 01:41:45 | 只看該作者
A Survey on the Dimension Theory in Dynamical Diophantine Approximation,cuses on the size of dynamically defined limsup sets in the sense of measure and dimension. This quantitative study is motivated by the qualitative nature?of the density of the orbits and the connections with the classic Diophantine approximation. In this survey, we collect some recent progress on t
56#
發(fā)表于 2025-3-31 07:27:11 | 只看該作者
57#
發(fā)表于 2025-3-31 09:49:10 | 只看該作者
Multifractal Properties of Convex Hulls of Typical Continuous Functions,a dense .. subset . such that for . the following properties are satisfied. For . = 1,?2 the functions .. and . coincide only on a set of zero Hausdorff dimension, the functions .. are continuously differentiable on (0,?1)., . equals the boundary of [0,?1]., ., . and . if . ∈ (0,?+.).{1}.
58#
發(fā)表于 2025-3-31 14:50:31 | 只看該作者
Small Union with Large Set of Centers,ton (0 ≤ . < .) of an .-dimensional cube centered at the origin or the .-skeleton of a more general polytope of .. We also study the case when we allow not only scaled copies but also scaled and rotated copies and also the case when we allow only rotated copies.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 06:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
扶余县| 和林格尔县| 延庆县| 岑溪市| 新沂市| 仪陇县| 永济市| 巴楚县| 土默特右旗| 禹城市| 五家渠市| 兴安盟| 普洱| 崇州市| 沅陵县| 田阳县| 安达市| 攀枝花市| 确山县| 太仆寺旗| 类乌齐县| 桃江县| 朝阳市| 上思县| 宣威市| 邻水| 鸡东县| 吉首市| 化隆| 崇义县| 静海县| 漯河市| 文安县| 赣州市| 大足县| 临沧市| 甘孜| 汉川市| 贵定县| 丰镇市| 兴国县|