找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

123456
返回列表
打印 上一主題 下一主題

Titlebook: Recent Developments in Fractals and Related Fields; Conference on Fracta Julien Barral,Stéphane Seuret Conference proceedings 2017 Springer

[復(fù)制鏈接]
樓主: Strategy
51#
發(fā)表于 2025-3-30 12:04:51 | 只看該作者
Some Problems on the Boundary of Fractal Geometry and Additive Combinatorics,wth of entropy of convolutions. We explain the main result on ., and derive, via a linearization argument, an analogous result for the action of the affine group on .. We also develop versions of the results for entropy dimension and Hausdorff dimension. The method is applied to two problems on the
52#
發(fā)表于 2025-3-30 12:46:20 | 只看該作者
53#
發(fā)表于 2025-3-30 18:07:59 | 只看該作者
54#
發(fā)表于 2025-3-30 22:29:56 | 只看該作者
55#
發(fā)表于 2025-3-31 01:41:45 | 只看該作者
A Survey on the Dimension Theory in Dynamical Diophantine Approximation,cuses on the size of dynamically defined limsup sets in the sense of measure and dimension. This quantitative study is motivated by the qualitative nature?of the density of the orbits and the connections with the classic Diophantine approximation. In this survey, we collect some recent progress on t
56#
發(fā)表于 2025-3-31 07:27:11 | 只看該作者
57#
發(fā)表于 2025-3-31 09:49:10 | 只看該作者
Multifractal Properties of Convex Hulls of Typical Continuous Functions,a dense .. subset . such that for . the following properties are satisfied. For . = 1,?2 the functions .. and . coincide only on a set of zero Hausdorff dimension, the functions .. are continuously differentiable on (0,?1)., . equals the boundary of [0,?1]., ., . and . if . ∈ (0,?+.).{1}.
58#
發(fā)表于 2025-3-31 14:50:31 | 只看該作者
Small Union with Large Set of Centers,ton (0 ≤ . < .) of an .-dimensional cube centered at the origin or the .-skeleton of a more general polytope of .. We also study the case when we allow not only scaled copies but also scaled and rotated copies and also the case when we allow only rotated copies.
123456
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 13:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长武县| 黎平县| 嘉峪关市| 那曲县| 莫力| 商水县| 阳山县| 卢氏县| 桃园市| 余江县| 崇礼县| 元氏县| 宜都市| 疏勒县| 富阳市| 奉节县| 伽师县| 中超| 禄丰县| 天全县| 南皮县| 湖南省| 大足县| 延庆县| 阿荣旗| 潜山县| 华容县| 邵阳县| 隆尧县| 汤阴县| 望城县| 嘉鱼县| 赤水市| 台北市| 鸡泽县| 中卫市| 图片| 横山县| 周宁县| 大同市| 洪泽县|