找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Recent Developments in Discontinuous Galerkin Finite Element Methods for Partial Differential Equati; 2012 John H Barrett Xiaobing Feng,Oh

[復(fù)制鏈接]
樓主: Grant
11#
發(fā)表于 2025-3-23 11:23:17 | 只看該作者
12#
發(fā)表于 2025-3-23 15:17:52 | 只看該作者
,Discontinuous Finite Element Methods for Coupled Surface–Subsurface Flow and Transport Problems,terized by the Navier–Stokes (or Stokes) equations coupled by Darcy equations. In the subsurface, the diffusion coefficient of the transport equation depends on the velocity field in a nonlinear manner. The interior penalty discontinuous Galerkin method is used for the spatial discretization, and th
13#
發(fā)表于 2025-3-23 21:19:39 | 只看該作者
0940-6573 survey papers on different aspects of discontinuous GalerkinThe field of discontinuous Galerkin finite element methods has attracted considerable recent attention from scholars in the applied sciences and engineering. This volume brings together scholars working in this area, each representing a par
14#
發(fā)表于 2025-3-23 23:39:40 | 只看該作者
A dG Approach to Higher Order ALE Formulations in Time,independent of the arbitrary extension chosen. Our approach is based on the validity of Reynolds’ identity for dG methods which generalize to higher order schemes the geometric conservation law (GCL) condition. Stability, a priori and a posteriori error analyses are briefly discussed and illustrated by insightful numerical experiments.
15#
發(fā)表于 2025-3-24 04:33:10 | 只看該作者
16#
發(fā)表于 2025-3-24 07:01:54 | 只看該作者
,Discontinuous Finite Element Methods for Coupled Surface–Subsurface Flow and Transport Problems,e backward Euler technique for the time integration. Convergence of the scheme is theoretically derived. Numerical examples show the robustness of the method for heterogeneous and fractured porous media.
17#
發(fā)表于 2025-3-24 14:30:13 | 只看該作者
Leszek F. Demkowicz,Jay Gopalakrishnan anyone who uses decision or evaluation models---for research or for applications---and is willing to question his practice, to have a deeper understanding of what he does..978-1-4419-4053-7978-0-387-31099-2Series ISSN 0884-8289 Series E-ISSN 2214-7934
18#
發(fā)表于 2025-3-24 18:25:19 | 只看該作者
19#
發(fā)表于 2025-3-24 21:36:48 | 只看該作者
20#
發(fā)表于 2025-3-25 00:19:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 01:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
罗定市| 文水县| 上蔡县| 沿河| 凌海市| 沙河市| 曲阜市| 阜新| 辽阳县| 花莲县| 阿克陶县| 苍梧县| 赞皇县| 布尔津县| 阜城县| 酒泉市| 临夏市| 江安县| 额尔古纳市| 乐平市| 旌德县| 怀来县| 墨脱县| 舒城县| 水城县| 安国市| 太康县| 洪泽县| 铜陵市| 石嘴山市| 唐海县| 贺州市| 武城县| 泰顺县| 阳山县| 诸暨市| 罗田县| 巴南区| 长汀县| 鹤庆县| 柳江县|