找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Recent Challenges in Intelligent Information and Database Systems; 13th Asian Conferenc Tzung-Pei Hong,Krystian Wojtkiewicz,Pawel Sitek Con

[復(fù)制鏈接]
查看: 8261|回復(fù): 54
樓主
發(fā)表于 2025-3-21 18:23:32 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Recent Challenges in Intelligent Information and Database Systems
副標(biāo)題13th Asian Conferenc
編輯Tzung-Pei Hong,Krystian Wojtkiewicz,Pawel Sitek
視頻videohttp://file.papertrans.cn/824/823090/823090.mp4
叢書名稱Communications in Computer and Information Science
圖書封面Titlebook: Recent Challenges in Intelligent Information and Database Systems; 13th Asian Conferenc Tzung-Pei Hong,Krystian Wojtkiewicz,Pawel Sitek Con
描述This volume constitutes the refereed proceedings of the 13th Asian Conference on Intelligent Information and Database Systems, ACIIDS 2021, held in Phuket, Thailand, in April 2021.?.The total of 35 full papers accepted for publication in these proceedings were carefully reviewed?and selected from 291 submissions. The papers are organized in the following topical sections: ??data mining and machine learning methods; advanced data mining techniques and applications; intelligent and contextual systems; natural language processing; network systems and applications; computational imaging and vision; decision support and control systems; data modelling and processing for Industry 4.0..
出版日期Conference proceedings 2021
關(guān)鍵詞artificial intelligence; computer hardware; computer systems; computer vision; databases; image processin
版次1
doihttps://doi.org/10.1007/978-981-16-1685-3
isbn_softcover978-981-16-1684-6
isbn_ebook978-981-16-1685-3Series ISSN 1865-0929 Series E-ISSN 1865-0937
issn_series 1865-0929
copyrightSpringer Nature Singapore Pte Ltd. 2021
The information of publication is updating

書目名稱Recent Challenges in Intelligent Information and Database Systems影響因子(影響力)




書目名稱Recent Challenges in Intelligent Information and Database Systems影響因子(影響力)學(xué)科排名




書目名稱Recent Challenges in Intelligent Information and Database Systems網(wǎng)絡(luò)公開(kāi)度




書目名稱Recent Challenges in Intelligent Information and Database Systems網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Recent Challenges in Intelligent Information and Database Systems被引頻次




書目名稱Recent Challenges in Intelligent Information and Database Systems被引頻次學(xué)科排名




書目名稱Recent Challenges in Intelligent Information and Database Systems年度引用




書目名稱Recent Challenges in Intelligent Information and Database Systems年度引用學(xué)科排名




書目名稱Recent Challenges in Intelligent Information and Database Systems讀者反饋




書目名稱Recent Challenges in Intelligent Information and Database Systems讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:18:04 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:28:53 | 只看該作者
地板
發(fā)表于 2025-3-22 07:20:15 | 只看該作者
5#
發(fā)表于 2025-3-22 09:31:01 | 只看該作者
6#
發(fā)表于 2025-3-22 16:33:53 | 只看該作者
Short Text Clustering Using Generalized Dirichlet Multinomial Mixture Modeled Dirichlet Multinomial Mixture model for short text clustering (GSDMM). The proposed approach has been evaluated on the Google News dataset. Our approach proved to be more efficient than the related-works and succeeded into overcoming the common challenges that come with short texts.
7#
發(fā)表于 2025-3-22 19:19:06 | 只看該作者
Comparative Study of Machine Learning Algorithms for Performant Text Analysis in a Real World Systemocessing, creation of a word cloud and keyword extraction. We will compare modern machine Learning algorithm like neural network, averaged perceptron and boosted decision tree available in Azure ML to train and score the model and do a prediction on a ticket’s probability of being assigned to a correct department.
8#
發(fā)表于 2025-3-22 23:10:51 | 只看該作者
: Penalty and Spotlight Mask for Abstractive Summarizations to increase the potential of important related words. We examined . on multiple types of datasets and languages, which are large-scale . for English, medium-scale . for Vietnamese, and small-scale . for Japanese. . not only significantly outperforms baselines by all three . points but also accommodates different datasets.
9#
發(fā)表于 2025-3-23 01:36:36 | 只看該作者
10#
發(fā)表于 2025-3-23 09:25:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 19:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
岳普湖县| 麟游县| 台北市| 庆元县| 石狮市| 安庆市| 宜阳县| 建水县| 玉山县| 台北市| 罗源县| 汉沽区| 阜康市| 富宁县| 弥渡县| 宁化县| 盐源县| 阜新市| 雷州市| 原平市| 罗山县| 元朗区| 肇州县| 红河县| 新丰县| 葵青区| 安化县| 贵阳市| 凤庆县| 平罗县| 辛集市| 北辰区| 汽车| 福州市| 云和县| 安义县| 通渭县| 乾安县| 建阳市| 彰武县| 海晏县|