找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Recent Advances on Soft Computing and Data Mining; Proceedings of the F Rozaida Ghazali,Nazri Mohd Nawi,Jemal H. Abawajy Conference proceed

[復制鏈接]
樓主: morphology
31#
發(fā)表于 2025-3-27 00:36:37 | 只看該作者
32#
發(fā)表于 2025-3-27 02:23:26 | 只看該作者
A Mechanism to Support Agile Frameworks Enhancing Reliability Assessment for SCS Development: A Caseoving Software Development (PM-ISD). The proposed measurement enhances reliability assessment and decision-making during agile development processes. PM-ISD assists the Agile management team throughout the Medical Surgery Department (MSD) project phases to track the completion of tasks.
33#
發(fā)表于 2025-3-27 05:45:57 | 只看該作者
34#
發(fā)表于 2025-3-27 09:51:12 | 只看該作者
Genetic Algorithm Based Parallel K-Means Data Clustering Algorithm Using MapReduce Programming Paradustering process by 0.54?s on average and outperformed PKCA. Data analysts in marketing and finance, telecommunication and transport companies and researchers in academia can use this algorithm to make sense out of their huge volume of data.
35#
發(fā)表于 2025-3-27 14:58:29 | 只看該作者
36#
發(fā)表于 2025-3-27 18:44:10 | 只看該作者
37#
發(fā)表于 2025-3-27 23:27:36 | 只看該作者
38#
發(fā)表于 2025-3-28 02:23:17 | 只看該作者
Residual Neural Network Vs Local Binary Convolutional Neural Networks for Bilingual Handwritten Digir LBCNN is 99.38%. In addition, the proposed systems are applied to MNIST and AHDBase datasets separately. The obtained accuracies for MNIST are 99.27% and 99.51% and for AHDBase are 99.29% and 99.38%, respectively. The resulting performance of ResNet and LBCNN are the highest when they are compared against several state-of-the-art techniques.
39#
發(fā)表于 2025-3-28 07:54:17 | 只看該作者
Link Bandwidth Recommendation for Indonesian E-Health Grid. The e-Health Grid consolidates 34 hospitals, four controllers, and four switches. The result of the simulation yields a recommendation of link bandwidth that provides minimum round trip time from each node in the grid.
40#
發(fā)表于 2025-3-28 14:18:50 | 只看該作者
Experimental Analysis of Tuberculosis Classification Based on Clinical Data Using Machine Learning Tcation methods based on clinical data. The results show that most of machine learning techniques that use in this study have a good performance in classifying tuberculosis based clinical data. Those machine learning techniques have achieved 0.97–0.99 in testing F1-Score.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 16:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
佳木斯市| 基隆市| 临漳县| 城口县| 台北市| 丽水市| 徐闻县| 卢龙县| 宾川县| 汝南县| 天台县| 罗江县| 曲靖市| 东阿县| 商城县| 定兴县| 罗甸县| 隆回县| 南和县| 天长市| 清涧县| 洪江市| 卢湾区| 江山市| 中卫市| 霍州市| 宁明县| 鄂托克前旗| 班戈县| 漯河市| 秀山| 浙江省| 志丹县| 上犹县| 泾阳县| 宜丰县| 南昌县| 仁化县| 麻栗坡县| 宜城市| 项城市|