找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Recent Advances in Reinforcement Learning; Leslie Pack Kaelbling Book 1996 Springer Science+Business Media New York 1996 Performance.algor

[復(fù)制鏈接]
樓主: 喝水
21#
發(fā)表于 2025-3-25 07:19:20 | 只看該作者
Editorial,for the journal. One measure of our success is that for 1994 in the category of “Computer Science/Artificial Intelligence,” . was ranked seventh in citation impact (out of a total of 32 journals) by the Institute for Scientific Information. This reflects the many excellent papers that have been subm
22#
發(fā)表于 2025-3-25 10:40:20 | 只看該作者
Introduction, reinforcement learning into a major component of the machine learning field. Since then, the area has expanded further, accounting for a significant proportion of the papers at the annual . and attracting many new researchers.
23#
發(fā)表于 2025-3-25 14:36:54 | 只看該作者
Efficient Reinforcement Learning through Symbiotic Evolution,ough genetic algorithms to form a neural network capable of performing a task. Symbiotic evolution promotes both cooperation and specialization, which results in a fast, efficient genetic search and discourages convergence to suboptimal solutions. In the inverted pendulum problem, SANE formed effect
24#
發(fā)表于 2025-3-25 15:53:37 | 只看該作者
25#
發(fā)表于 2025-3-25 19:58:01 | 只看該作者
Feature-Based Methods for Large Scale Dynamic Programming,ve large scale stochastic control problems. In particular, we develop algorithms that employ two types of feature-based compact representations; that is, representations that involve feature extraction and a relatively simple approximation architecture. We prove the convergence of these algorithms a
26#
發(fā)表于 2025-3-26 01:28:50 | 只看該作者
On the Worst-Case Analysis of Temporal-Difference Learning Algorithms, takes place in a sequence of trials, and the goal of the learning algorithm is to estimate a discounted sum of all the reinforcements that will be received in the future. In this setting, we are able to prove general upper bounds on the performance of a slightly modified version of Sutton’s so-call
27#
發(fā)表于 2025-3-26 07:44:00 | 只看該作者
28#
發(fā)表于 2025-3-26 10:03:50 | 只看該作者
Average Reward Reinforcement Learning: Foundations, Algorithms, and Empirical Results,cal tasks than the much better studied discounted framework. A wide spectrum of average reward algorithms are described, ranging from synchronous dynamic programming methods to several (provably convergent) asynchronous algorithms from optimal control and learning automata. A general sensitive disco
29#
發(fā)表于 2025-3-26 13:46:06 | 只看該作者
30#
發(fā)表于 2025-3-26 19:56:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 02:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
图片| 萝北县| 舟山市| 漳浦县| 读书| 怀集县| 渝北区| 湘潭市| 奉节县| 泾川县| 自贡市| 公主岭市| 保亭| 贺州市| 永吉县| 龙川县| 进贤县| 玛曲县| 蕉岭县| 天津市| 六安市| 临沧市| 莆田市| 南川市| 天峻县| 定南县| 华容县| 云南省| 合山市| 深水埗区| 静安区| 上思县| 轮台县| 嵊州市| 宣城市| 西平县| 博白县| 东兰县| 巩义市| 丰顺县| 全州县|