找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Recent Advances in Operator Theory and Its Applications; The Israel Gohberg A Israel Gohberg,D. Alpay,Cornelis Mee Conference proceedings 2

[復制鏈接]
樓主: ACRO
21#
發(fā)表于 2025-3-25 07:08:52 | 只看該作者
22#
發(fā)表于 2025-3-25 08:46:09 | 只看該作者
The Singularly Continuous Spectrum and Non-Closed Invariant Subspaces,n 1, we study the variation of the invariant subspace ?. under bounded self-adjoint perturbations . of . that are off-diagonal with respect to the decomposition ? = ?. ⊕ ?.. In particular, we prove the existence of a one-parameter family of dense non-closed invariant subspaces of the operator . + .
23#
發(fā)表于 2025-3-25 13:51:33 | 只看該作者
Optimal Prediction of Generalized Stationary Processes,es rise to what is called . stationary processes [GV61], e.g., to white noise and to many other examples. Hence it is of interest to carry over optimal prediction and filtering methods to them. For arbitrary generalized stochastic processes this could be a challenging problem. It was shown recently
24#
發(fā)表于 2025-3-25 18:49:00 | 只看該作者
Symmetries of 2D Discrete-Time Linear Systems,ertheless, only partial results were available for the multidimensional case, since the extension of the theory for 1D systems proved not to be straightforward, as usual. Actually, a non trivial regularity assumption and also restrictions on the set of allowed symmetries had to be imposed. In this p
25#
發(fā)表于 2025-3-25 23:27:51 | 只看該作者
26#
發(fā)表于 2025-3-26 01:44:59 | 只看該作者
27#
發(fā)表于 2025-3-26 05:21:03 | 只看該作者
28#
發(fā)表于 2025-3-26 12:27:30 | 只看該作者
29#
發(fā)表于 2025-3-26 12:49:35 | 只看該作者
Schur-type Algorithms for the Solution of Hermitian Toeplitz Systems via Factorization,r-Bareiss algorithm, 3-term one-step and double-step algorithms, and the Schur-type analogue of a Levinson-type algorithm of B. Krishna and H. Krishna. The latter one reduces the number of the multiplications by almost 50% compared with the classical Schur-Bareiss algorithm.
30#
發(fā)表于 2025-3-26 19:09:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 11:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
泗洪县| 南郑县| 曲阳县| 法库县| 霍州市| 潼关县| 沾益县| 安国市| 临猗县| 壶关县| 康保县| 澜沧| 东明县| 翼城县| 武陟县| 邳州市| 乌拉特中旗| 阜康市| 兴业县| 林州市| 石景山区| 彰化市| 鹤壁市| 大港区| 微山县| 安平县| 阳西县| 时尚| 枣庄市| 繁峙县| 公安县| 紫云| 佳木斯市| 怀柔区| 周口市| 灵山县| 临江市| 樟树市| 新津县| 衡水市| 苏尼特左旗|