找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Recent Advances in Mathematical Analysis; Celebrating the 70th Anna Maria Candela,Mirella Cappelletti Montano,Eli Book 2023 The Editor(s) (

[復(fù)制鏈接]
樓主: 大破壞
41#
發(fā)表于 2025-3-28 17:11:47 | 只看該作者
42#
發(fā)表于 2025-3-28 22:10:15 | 只看該作者
,A Strong Variant of Weyl’s Theorem Under Functional Calculus and Perturbations,The aim of this paper is the study of a new and strong variant (.) of the classical Weyl’s theorem, for operators defined on Banach spaces, under functional calculus. Furthermore, we give some results on the permanence of (.) theorem under commuting perturbations, as algebraic or finite-dimensional commuting perturbations.
43#
發(fā)表于 2025-3-28 23:34:33 | 只看該作者
44#
發(fā)表于 2025-3-29 03:08:30 | 只看該作者
45#
發(fā)表于 2025-3-29 11:16:19 | 只看該作者
A Degenerate Operator in Non Divergence Form,In this paper we consider a fourth order operator in non divergence form .?:=?., where . is a function that degenerates somewhere in the interval. We prove that the operator generates an analytic semigroup, under suitable assumptions on the function .. We extend these results to a general operator .?:=?..
46#
發(fā)表于 2025-3-29 11:35:03 | 只看該作者
47#
發(fā)表于 2025-3-29 17:22:36 | 只看該作者
48#
發(fā)表于 2025-3-29 21:06:34 | 只看該作者
On Oscillatory Behavior of Third Order Half-Linear Difference Equations,This paper deals with the oscillatory behavior of third order half-linear difference equations. We present new oscillation criteria, which improve, extend and simplify existing ones in the literature. The results are illustrated by some examples.
49#
發(fā)表于 2025-3-30 01:20:57 | 只看該作者
Anna Maria Candela,Mirella Cappelletti Montano,EliCovers some of the most innovative topics in Mathematical Analysis.Includes papers by respected researchers in the field of Mathematical Analysis.Promotes the interchange of ideas among researches in
50#
發(fā)表于 2025-3-30 07:01:00 | 只看該作者
978-3-031-20023-6The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 22:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
手游| 基隆市| 穆棱市| 贵溪市| 疏附县| 房山区| 育儿| 博客| 皮山县| 财经| 雅江县| 保康县| 长顺县| 濮阳市| 临城县| 莱州市| 临漳县| 青海省| 永州市| 绥中县| 平塘县| 乐都县| 奉贤区| 和平县| 顺平县| 修水县| 盈江县| 吉木乃县| 那坡县| 剑川县| 望都县| 晋城| 天峨县| 兴义市| 承德市| 茌平县| 合山市| 鹿邑县| 广元市| 张家川| 屏南县|