找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Recent Advances in Mathematical Analysis; Celebrating the 70th Anna Maria Candela,Mirella Cappelletti Montano,Eli Book 2023 The Editor(s) (

[復(fù)制鏈接]
樓主: 大破壞
21#
發(fā)表于 2025-3-25 06:05:51 | 只看該作者
22#
發(fā)表于 2025-3-25 09:16:32 | 只看該作者
Norm and Essential Norm of Composition Operators Mapping into Weighted Banach Spaces of Harmonic Maapply our results to the case when the composition operator acts on the members of a class of harmonic Hilbert spaces. We obtain an exact formula of the essential norm, which holds in particular for the harmonic Hardy space, the harmonic Bergman space, the harmonic Dirichlet space, and the harmonic Bloch space.
23#
發(fā)表于 2025-3-25 15:16:30 | 只看該作者
24#
發(fā)表于 2025-3-25 18:21:35 | 只看該作者
25#
發(fā)表于 2025-3-25 19:59:22 | 只看該作者
2297-0215 lysis.Promotes the interchange of ideas among researches in This book collects selected peer reviewed papers on the topics of Nonlinear Analysis, Functional Analysis, (Korovkin-Type) Approximation Theory, and Partial Differential Equations. The aim of the volume is, in fact, to promote the connectio
26#
發(fā)表于 2025-3-26 03:43:52 | 只看該作者
,On Wachnicki’s Generalization of the Gauss–Weierstrass Integral,a generalization of the heat equation. The main result is an asymptotic expansion for the operators when applied to a function belonging to a rather large class. An essential auxiliary result is a localization theorem which is interesting in itself.
27#
發(fā)表于 2025-3-26 08:23:43 | 只看該作者
28#
發(fā)表于 2025-3-26 12:12:09 | 只看該作者
29#
發(fā)表于 2025-3-26 15:03:53 | 只看該作者
30#
發(fā)表于 2025-3-26 18:46:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 20:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
济阳县| 南和县| 修武县| 青浦区| 永福县| 内丘县| 大关县| 神农架林区| 隆安县| 南宁市| 武宁县| 广东省| 玉溪市| 通许县| 观塘区| 昌图县| 玉龙| 贵阳市| 舞钢市| 习水县| 柞水县| 桂阳县| 米易县| 朝阳区| 汉川市| 蕲春县| 孙吴县| 临沂市| 淮滨县| 确山县| 宜兴市| 西吉县| 富宁县| 汨罗市| 汉寿县| 新晃| 全州县| 和平县| 松阳县| 军事| 韶山市|