找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Recent Advances in Geometric Inequalities; D. S. Mitrinovi?,J. E. Pe?ari?,V. Volenec Book 1989 Springer Science+Business Media Dordrecht 1

[復(fù)制鏈接]
樓主: 信賴(lài)
21#
發(fā)表于 2025-3-25 07:11:31 | 只看該作者
22#
發(fā)表于 2025-3-25 09:55:04 | 只看該作者
Homogeneous Symmetric Polynomial Geometric Inequalities, the form p(a, b, c) 0 or p(a, b, c) 0 where p(a, b, c) is a symmetric and homogeneous polynomial of degree n in the real variables a, b, c representing the sides of a triangle. They gave the general solution for such inequalities if n ≤ 3.
23#
發(fā)表于 2025-3-25 13:54:14 | 只看該作者
Some Other Transformations,n use these results for generating many other inequalities, i.e. using any known inequality for the sides of a triangle ., and any result from I.3, we get the inequality ., where a., b., c. are the sides of a new triangle given as in I.3.
24#
發(fā)表于 2025-3-25 18:33:14 | 只看該作者
25#
發(fā)表于 2025-3-25 22:57:07 | 只看該作者
Homogeneous Symmetric Polynomial Geometric Inequalities, the form p(a, b, c) 0 or p(a, b, c) 0 where p(a, b, c) is a symmetric and homogeneous polynomial of degree n in the real variables a, b, c representing the sides of a triangle. They gave the general solution for such inequalities if n ≤ 3.
26#
發(fā)表于 2025-3-26 00:43:15 | 只看該作者
27#
發(fā)表于 2025-3-26 07:16:07 | 只看該作者
28#
發(fā)表于 2025-3-26 10:51:23 | 只看該作者
Special Triangles,ng a. + b. + c. = 8R. is a right triangle. Starting from these well-known properties V. Devidé [1] has investigated at length the special class of triangles defined by a. + b. + c. = 6R.. O. Bottema [2] considered the general class of triangles (k-triangles) defined by a. + b. + c. = kR.. In [12] it
29#
發(fā)表于 2025-3-26 12:37:22 | 只看該作者
30#
發(fā)表于 2025-3-26 20:35:20 | 只看該作者
Some Trigonometric Inequalities, that many of these inequalities are still valid for real numbers A, B, C which satisfy the condition . where p is a natural number (which has to be odd in some cases). This also applies to the inequality of M. S. Klamkin [2] which can be specialized in many ways to obtain numerous well known inequalities.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 06:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
菏泽市| 三明市| 治多县| 准格尔旗| 沾化县| 海城市| 漠河县| 阿鲁科尔沁旗| 长丰县| 抚松县| 读书| 长汀县| 托里县| 玉溪市| 华亭县| 城口县| 灌南县| 无极县| 双峰县| 云林县| 尉犁县| 长岭县| 巫溪县| 宁晋县| 邵武市| 金堂县| 徐水县| 东山县| 遂宁市| 科技| 平山县| 左云县| 吉首市| 长汀县| 湛江市| 浪卡子县| 天峻县| 喜德县| 岑巩县| 石屏县| 杭锦旗|