找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Recent Advances in Big Data and Deep Learning; Proceedings of the I Luca Oneto,Nicolò Navarin,Davide Anguita Conference proceedings 2020 Sp

[復(fù)制鏈接]
樓主: Chylomicron
41#
發(fā)表于 2025-3-28 16:50:38 | 只看該作者
42#
發(fā)表于 2025-3-28 21:42:23 | 只看該作者
43#
發(fā)表于 2025-3-29 01:58:50 | 只看該作者
Perturbed Proximal Descent to Escape Saddle Points for Non-convex and Non-smooth Objective FunctionWe consider the problem of finding local minimizers in non-convex and non-smooth optimization. Under the assumption of strict saddle points, positive results have been derived for first-order methods. We present the first known results for the non-smooth case, which requires different analysis and a different algorithm.
44#
發(fā)表于 2025-3-29 06:09:45 | 只看該作者
Luca Oneto,Nicolò Navarin,Davide AnguitaOffers recent research in Big Data and Deep Learning.Presents contributions from researchers and professionals in Big Data, Deep Learning and related areas.Includes Proceedings of the INNS Big Data an
45#
發(fā)表于 2025-3-29 08:04:27 | 只看該作者
Proceedings of the International Neural Networks Societyhttp://image.papertrans.cn/r/image/822617.jpg
46#
發(fā)表于 2025-3-29 11:31:48 | 只看該作者
https://doi.org/10.1007/978-3-030-16841-4Big Data; Deep Learning; Neural Networks; INNS Big Data and Deep Learning 2019; INNSBDDL2019
47#
發(fā)表于 2025-3-29 16:51:09 | 只看該作者
978-3-030-16840-7Springer Nature Switzerland AG 2020
48#
發(fā)表于 2025-3-29 22:43:59 | 只看該作者
49#
發(fā)表于 2025-3-30 03:50:42 | 只看該作者
Dropout for Recurrent Neural Networks,opout algorithms have not been tested against one another and the naive algorithm under identical experimental conditions. This paper compares all of these algorithms and finds that the naive approach performed as well as or better than the specialised Dropout algorithms.
50#
發(fā)表于 2025-3-30 04:49:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 00:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巫溪县| 淳化县| 南岸区| 高邮市| 古交市| 宁武县| 千阳县| 伽师县| 庆城县| 青田县| 共和县| 三明市| 桃园县| 临桂县| 沂源县| 绵竹市| 克什克腾旗| 临朐县| 肃宁县| 平陆县| 庆元县| 剑阁县| 嵊泗县| 灵石县| 石渠县| 涪陵区| 天全县| 宝清县| 应城市| 威信县| 湟中县| 虎林市| 襄樊市| 固原市| 横峰县| 龙门县| 凭祥市| 榕江县| 木里| 马公市| 崇明县|