找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Realization and Modelling in System Theory; Proceedings of the I M. A. Kaashoek,J. H. Schuppen,A. C. M. Ran Conference proceedings 1990 Bir

[復(fù)制鏈接]
樓主: architect
41#
發(fā)表于 2025-3-28 15:46:59 | 只看該作者
42#
發(fā)表于 2025-3-28 21:34:45 | 只看該作者
43#
發(fā)表于 2025-3-28 23:32:00 | 只看該作者
44#
發(fā)表于 2025-3-29 04:03:40 | 只看該作者
45#
發(fā)表于 2025-3-29 10:00:33 | 只看該作者
https://doi.org/10.1007/978-1-4612-3462-3Nonlinear system; linear algebra; numerical method; operator theory; stability; stabilization; system; syst
46#
發(fā)表于 2025-3-29 13:01:31 | 只看該作者
47#
發(fā)表于 2025-3-29 16:51:10 | 只看該作者
Transformation Issues in Linear Systems Theorydied. Some matrix transformations and their systems theory counterparts are described which meet these requirements. Specifically a unified treatment of the problem is presented in which the point at infinity is dealt with on the same basis as the finite points of the frequency domain.
48#
發(fā)表于 2025-3-29 22:15:18 | 只看該作者
Input/Output Equations and Realizabilityputs and outputs of a continuous time system. The only assumption needed is that the data be “well-posed” in a suitable sense. Our results serve to relate the notion of realizability proposed by Fliess in the context of differential algebra with the more standard concept used in nonlinear state-space systems.
49#
發(fā)表于 2025-3-29 23:54:15 | 只看該作者
A Note on the Geometry of Partial Realization,τ) of all finite sequences of fixed length τ which have a minimal realization of dimension n ≤ τ. Moreover, we present continuity results for different canonical realization maps on the sequence spaces S(n,τ).
50#
發(fā)表于 2025-3-30 07:20:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 10:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
罗江县| 内江市| 罗平县| 朝阳市| 兴安县| 香格里拉县| 安泽县| 和田县| 鸡西市| 高淳县| 洪江市| 建湖县| 汉沽区| 彭泽县| 北安市| 绥宁县| 延安市| 林口县| 商水县| 夹江县| 江门市| 苍梧县| 建始县| 扎囊县| 兴海县| 吉木乃县| 金山区| 宁陵县| 兴宁市| 小金县| 龙陵县| 汉中市| 寻甸| 东源县| 揭阳市| 滨海县| 宝山区| 霍州市| 聂荣县| 万州区| 新巴尔虎左旗|