找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Real Analysis; Series, Functions of Miklós Laczkovich,Vera T. Sós Textbook 2017 Springer Science+Business Media LLC 2017 Continuity of func

[復(fù)制鏈接]
樓主: 時(shí)間
11#
發(fā)表于 2025-3-23 12:57:31 | 只看該作者
https://doi.org/10.1007/978-1-4939-7369-9Continuity of functions; History of Fourier series; History of infinite series; Limit of functions; Real
12#
發(fā)表于 2025-3-23 15:13:47 | 只看該作者
Functions from , to ,,Consider a function ., where . is an arbitrary set, and let the coordinates of the vector .(.) be denoted by . for every .. In this way we define the functions ., where . for every .. We call . the .th . or . of ..
13#
發(fā)表于 2025-3-23 20:17:54 | 只看該作者
The Jordan Measure,One of the main goals of mathematical analysis, besides applications in physics, is to compute the measure of sets (arc length, area, surface area, and volume).
14#
發(fā)表于 2025-3-23 23:14:14 | 只看該作者
,Integrals of Multivariable Functions?I,The concept of the integral of a multivariable function arose as an attempt to solve some problems in mathematics, physics, and in science in general, similarly to the case of the integral of a single-variable function. We give an example from physics.
15#
發(fā)表于 2025-3-24 05:54:17 | 只看該作者
,Integrals of Multivariable Functions?II,The notion of the line integral was motivated by some problems in physics. One of these problems is the computation of the work done by a force that changes while moving a point. The mathematical model describing the situation is the following.
16#
發(fā)表于 2025-3-24 07:58:48 | 只看該作者
17#
發(fā)表于 2025-3-24 13:37:46 | 只看該作者
18#
發(fā)表于 2025-3-24 15:38:25 | 只看該作者
19#
發(fā)表于 2025-3-24 21:49:00 | 只看該作者
Miklós Laczkovich,Vera T. SósCorresponds to a second course in real analysis to follow the authors‘ book Real Analysis: Foundations and Functions of One Variable.Motivates ideas and results in analysis by exploring concepts and a
20#
發(fā)表于 2025-3-25 01:40:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 03:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
通河县| 济南市| 扶余县| 峨山| 榆社县| 利辛县| 渭南市| 新余市| 兰坪| 绍兴市| 长泰县| 巴林左旗| 翼城县| 彩票| 林口县| 海原县| 三都| 门源| 芦溪县| 锡林浩特市| 盐边县| 凤山县| 博客| 达孜县| 长寿区| 南康市| 钦州市| 仙游县| 额济纳旗| 共和县| 温州市| 永善县| 永嘉县| 金山区| 河池市| 保山市| 沈阳市| 大丰市| 永修县| 来安县| 莱西市|