找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Real Analysis; Foundations and Func Miklós Laczkovich,Vera T. Sós Textbook 2015 Springer New York 2015 Fourier series.Stieltjes integral.co

[復(fù)制鏈接]
樓主: ACE313
11#
發(fā)表于 2025-3-23 12:56:05 | 只看該作者
Functions of Bounded Variation,ce between either sum and the integral is at most ., the oscillatory sum corresponding to ...Thus the oscillatory sum is an upper bound for the difference between the approximating sums and the integral..We also know that if . is integrable, then the oscillating sum can become smaller than any fixed
12#
發(fā)表于 2025-3-23 14:04:32 | 只看該作者
13#
發(fā)表于 2025-3-23 19:24:20 | 只看該作者
The Improper Integral,nts of the interval) and are bounded on that interval. These restrictions are sometimes too strict; there are problems whose solutions require us to integrate functions on unbounded intervals, or that themselves might not be bounded.
14#
發(fā)表于 2025-3-24 01:25:46 | 只看該作者
15#
發(fā)表于 2025-3-24 03:46:46 | 只看該作者
The Definite Integral,This concept, in contrast to that of the indefinite integral, assigns numbers to functions (and not a family of functions). In the next chapter, we will see that as the name . that they share indicates, there is a strong connection between the two concepts of integrals.
16#
發(fā)表于 2025-3-24 09:43:34 | 只看該作者
Functions of Bounded Variation,ence between the approximating sums and the integral..We also know that if . is integrable, then the oscillating sum can become smaller than any fixed positive number for a sufficiently fine partition (see Theorem 14.23).
17#
發(fā)表于 2025-3-24 12:30:10 | 只看該作者
Infinite Sequences II, that is, .. ≠ 0 for all .?>?.., then 1?≤?..?≤?9, and so . also holds if .?>?... By Theorem?4.17, .. Thus for a given .?>?0, there is an .. such that . for all .?>?... So if ., then ., and thus ..?→?1.
18#
發(fā)表于 2025-3-24 15:49:08 | 只看該作者
19#
發(fā)表于 2025-3-24 21:55:54 | 只看該作者
20#
發(fā)表于 2025-3-24 23:12:25 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 06:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
怀集县| 江陵县| 澳门| 天等县| 西宁市| 闽侯县| 建宁县| 津南区| 巴彦县| 济源市| 沂水县| 淳安县| 临潭县| 项城市| 怀仁县| 页游| 泾源县| 铜川市| 昆明市| 定陶县| 三明市| 文昌市| 阿图什市| 临洮县| 合山市| 东乌珠穆沁旗| 裕民县| 舞钢市| 靖远县| 舞阳县| 共和县| 登封市| 涟源市| 成都市| 南平市| 辛集市| 枣强县| 枣庄市| 错那县| 大名县| 大同市|