找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Reachability Problems; 17th International C Olivier Bournez,Enrico Formenti,Igor Potapov Conference proceedings 2023 The Editor(s) (if appl

[復制鏈接]
樓主: 婉言
41#
發(fā)表于 2025-3-28 18:27:30 | 只看該作者
Multi-weighted Reachability Gamese obtained thanks to a fixpoint algorithm which also computes the upper value in polynomial time and the Pareto frontier in exponential time. Finally, the constrained existence problem is proved in . for the lexicographic order and .-complete for the componentwise order.
42#
發(fā)表于 2025-3-28 22:29:10 | 只看該作者
43#
發(fā)表于 2025-3-29 02:06:35 | 只看該作者
44#
發(fā)表于 2025-3-29 06:48:20 | 只看該作者
45#
發(fā)表于 2025-3-29 07:35:19 | 只看該作者
Quantitative Reachability Stackelberg-Pareto Synthesis Is ,-Completently investigated for .-regular objectives. We solve this problem for weighted graph games and quantitative reachability objectives such that Player?0 wants to reach his target set with a total cost less than some given upper bound. We show that it is .-complete, as for Boolean reachability objectives.
46#
發(fā)表于 2025-3-29 14:12:42 | 只看該作者
On the?Complexity of?Robust Eventual Inequality Testing for?C-Finite Functionsomputational complexity, we develop a natural notion of polynomial-time decidability of subsets of computable metric spaces which extends our recently introduced notion of maximal partial decidability. We show that eventual inequality of C-finite functions is polynomial-time decidable in this sense.
47#
發(fā)表于 2025-3-29 17:52:30 | 只看該作者
48#
發(fā)表于 2025-3-29 22:19:34 | 只看該作者
49#
發(fā)表于 2025-3-30 02:30:17 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 13:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
阳山县| 含山县| 三都| 天等县| 林周县| 铜川市| 印江| 离岛区| 灵武市| 昌平区| 无棣县| 砀山县| 平和县| 桦甸市| 临湘市| 南丹县| 湖北省| 霍城县| 慈溪市| 商南县| 永嘉县| 措美县| 嘉义市| 会东县| 嘉义市| 余干县| 通城县| 云南省| 朝阳县| 乌拉特后旗| 丰镇市| 伊宁市| 郓城县| 青河县| 竹北市| 元江| 安仁县| 西峡县| 东至县| 新郑市| 康定县|