找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Raumfahrtsysteme; Eine Einführung mit Stefanos Fasoulas,Ernst Messerschmid Textbook 20093rd edition Springer-Verlag Berlin Heidelberg 2009

[復(fù)制鏈接]
樓主: 日月等
51#
發(fā)表于 2025-3-30 09:02:10 | 只看該作者
52#
發(fā)表于 2025-3-30 13:43:10 | 只看該作者
Einleitung,che Neugier, er?ffnet sie uns neue Horizonte in Raum und Zeit. Der erdnahe Orbit über der Erdatmosph?re schafft uns die besten Voraussetzungen, bei der ?Mission zum Planeten Erde“ unsere terrestrischen Biosph?ren zu erkunden und den auch manchmal negativen Einfluss des menschlichen Expansionsdranges
53#
發(fā)表于 2025-3-30 18:56:19 | 只看該作者
Die Ziolkowsky-Raketengleichung,hrhunderts entdeckte und 1903 publizierte. Er wurde damit zum Begründer der mathematischen Theorie zur Beschreibung des Raketenfluges. Mit der Ziolkowsky- Raketengleichung, die im Wesentlichen die Impulserhaltungsgleichung einer Rakete darstellt, l?sst sich das Antriebsverm?gen einer Rakete berechne
54#
發(fā)表于 2025-3-31 00:23:38 | 只看該作者
Grundlagen der Bahnmechanik,en. Man bezeichnet diese Fragestellung als ., h?ufig aber auch als . oder .. Sie soll die n?tigen Informationen liefern für .a) die Planung von Antriebssystemen und Missionen, .b) die genauen Vorausberechnungen der Bahnen und Flugzeiten (wird hier nicht vertieft) und .c) die Durchführung von Mission
55#
發(fā)表于 2025-3-31 02:43:08 | 只看該作者
,Man?ver zur Bahn?nderung,fbahn kommt, z. B. in einen geostation?ren Orbit, sind teilweise mehrere Bahn?nderungsman?ver notwendig, deren Energiebedarf durch eine ?Rakete“ (Triebwerk) mit einer entsprechenden Treibstoffmenge bereitgestellt werden muss. Die für die Bahn?nderungen ben?tigte Mindestantriebsenergie k?nnte man gru
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 00:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
灵台县| 泾阳县| 平潭县| 台中市| 平乡县| 安岳县| 三穗县| 普陀区| 象山县| 洛宁县| 万盛区| 榕江县| 吉安市| 盖州市| 焉耆| 盐边县| 和静县| 临沧市| 榕江县| 灌阳县| 清远市| 如东县| 赤峰市| 万山特区| 崇信县| 大名县| 会理县| 诸城市| 泊头市| 治多县| 周宁县| 轮台县| 石楼县| 宣化县| 额敏县| 石门县| 武安市| 黎平县| 凯里市| 庆云县| 达日县|