找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Rationality and Equilibrium; A Symposium in Honor Charalambos D. Aliprantis,Rosa L. Matzkin,Nicholas Conference proceedings 2006 Springer-V

[復(fù)制鏈接]
樓主: mountebank
11#
發(fā)表于 2025-3-23 13:30:38 | 只看該作者
12#
發(fā)表于 2025-3-23 17:01:10 | 只看該作者
Log-concave probability and its applications,bility functions, and their integrals. We list a large number of commonly-used probability distributions and report the log-concavity or log-convexity of their density functions and their integrals. We also discuss a variety of applications of log-concavity that have appeared in the literature.
13#
發(fā)表于 2025-3-23 21:02:12 | 只看該作者
Conference proceedings 2006o-Garcia, Roger Lagunoff, Yakar Kannai, Myrna Wooders, James Moore, Ted Bergstrom, Luca Anderlini, Lin Zhou, Mark Bagnoli, Alexander Kovalenkov, Carlos Herves-Beloso, Michaela Topuzu, Bernard Cornet, Andreu Mas-Colell and Nicholas Yannelis.
14#
發(fā)表于 2025-3-24 01:57:37 | 只看該作者
Revealed stochastic preference: a synthesis,re consistent with a hypothesis of maximization of preference preorders by members of the population. This is a population analog of the classical revealed preference problem in economic consumer theory. This paper synthesizes the solutions to this problem that have been obtained by Marcel K. Richte
15#
發(fā)表于 2025-3-24 03:32:54 | 只看該作者
,Communication in dynastic repeated games: ‘Whitewashes’ and ‘coverups’,place them in an infinitely repeated game. Each individual is unable to observe what happens before his entry in the game. Past information is therefore conveyed from one cohort to the next by means of communication..When communication is costless and messages are sent simultaneously, communication
16#
發(fā)表于 2025-3-24 09:42:36 | 只看該作者
The structure of the Nash equilibrium sets of standard 2-player games,tions and quasi-concave in own actions. I show that a no-improper-crossing condition is both necessary and sufficient for a finite subset . of [0, 1] × [0, 1] to be the set of Nash equilibria of such a game.
17#
發(fā)表于 2025-3-24 12:28:03 | 只看該作者
18#
發(fā)表于 2025-3-24 18:14:42 | 只看該作者
19#
發(fā)表于 2025-3-24 20:38:11 | 只看該作者
20#
發(fā)表于 2025-3-25 02:32:57 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 00:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
镇安县| 蓬溪县| 库尔勒市| 林州市| 旅游| 石首市| 高台县| 乐山市| 资中县| 屏东县| 曲松县| 彭水| 务川| 定安县| 阿巴嘎旗| 巩义市| 昌江| 读书| 泰和县| 泽库县| 金塔县| 邮箱| 仁布县| 壤塘县| 康保县| 慈溪市| 孟津县| 陆良县| 板桥市| 沽源县| 宜兰县| 喀什市| 昭苏县| 哈巴河县| 尤溪县| 松溪县| 福贡县| 板桥市| 玉屏| 泸溪县| 铜陵市|