找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Rational Points on Elliptic Curves; Joseph H. Silverman,John T. Tate Textbook 2015Latest edition Springer International Publishing Switzer

[復制鏈接]
樓主: Monsoon
11#
發(fā)表于 2025-3-23 13:26:50 | 只看該作者
Textbook 2015Latest editionnal numbers. It is this number theoretic question that is the main subject of .Rational Points on Elliptic Curves.. Topics covered include the geometry and group structure of elliptic curves, the Nagell–Lutz theorem describing points of finite order, the Mordell–Weil theorem on the finite generation
12#
發(fā)表于 2025-3-23 15:14:15 | 只看該作者
13#
發(fā)表于 2025-3-23 21:18:58 | 只看該作者
14#
發(fā)表于 2025-3-23 23:29:31 | 只看該作者
Complex Multiplication,d to use some basic theorems about extension fields and Galois groups, but nothing very fancy. We start by reminding you of most of the facts that we need, and you can look in any basic algebra text such as [14, 23, 26] for the proofs and additional background material.
15#
發(fā)表于 2025-3-24 04:42:40 | 只看該作者
16#
發(fā)表于 2025-3-24 08:51:36 | 只看該作者
Points of Finite Order, study of points of finite order on cubic curves by looking at points of order two and order three. As usual, we will assume that our non-singular cubic curve is given by a Weierstrass equation . and that the point at infinity . is taken to be the zero element for the group law.
17#
發(fā)表于 2025-3-24 13:57:38 | 只看該作者
18#
發(fā)表于 2025-3-24 18:17:53 | 只看該作者
Integer Points on Cubic Curves,), then the set of all rational points on . forms a finitely generated abelian group. So we can get every rational point on . by starting from some finite set and adding points using the geometrically defined group law.
19#
發(fā)表于 2025-3-24 22:53:00 | 只看該作者
Complex Multiplication,ean points of finite order with arbitrary complex coordinates, not just the ones with rational coordinates that we studied in Chapter 2 So we will need to use some basic theorems about extension fields and Galois groups, but nothing very fancy. We start by reminding you of most of the facts that we
20#
發(fā)表于 2025-3-24 23:42:21 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-19 21:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
贵溪市| 图片| 苏尼特左旗| 新竹市| 江阴市| 海兴县| 漳州市| 河南省| 玉山县| 玉田县| 泰和县| 新昌县| 东乌珠穆沁旗| 扶余县| 东乌| 吉安县| 略阳县| 女性| 马山县| 侯马市| 鹤庆县| 德庆县| 西林县| 美姑县| 乌鲁木齐市| 洛隆县| 新竹县| 都匀市| 衡山县| 罗江县| 云阳县| 阿城市| 福泉市| 黄浦区| 丽江市| 保康县| 庄浪县| 阜城县| 页游| 和顺县| 德格县|